Your browser doesn't support javascript.
loading
Excitotoxic glutamate levels drive spinal cord ependymal stem cell proliferation and fate specification through CP-AMPAR signaling.
Hachem, Laureen D; Hong, James; Velumian, Alexander; Mothe, Andrea J; Tator, Charles H; Fehlings, Michael G.
Afiliação
  • Hachem LD; Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada.
  • Hong J; Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
  • Velumian A; Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada.
  • Mothe AJ; Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
  • Tator CH; Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada. Electronic address: charles.tator@uhn.ca.
  • Fehlings MG; Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada. Electronic address: michael.fehlings@uhn.ca.
Stem Cell Reports ; 18(3): 672-687, 2023 03 14.
Article em En | MEDLINE | ID: mdl-36764296
The adult spinal cord contains a population of ependymal-derived neural stem/progenitor cells (epNSPCs) that are normally quiescent, but are activated to proliferate, differentiate, and migrate after spinal cord injury. The mechanisms that regulate their response to injury cues, however, remain unknown. Here, we demonstrate that excitotoxic levels of glutamate promote the proliferation and astrocytic fate specification of adult spinal cord epNSPCs. We show that glutamate-mediated calcium influx through calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (CP-AMPARs) in concert with Notch signaling increases the proliferation of epNSPCs via pCREB, and induces astrocytic differentiation through Hes1 upregulation. Furthermore, the in vivo targeting of this pathway via positive modulation of AMPARs after spinal cord injury enhances epNSPC proliferation, astrogliogenesis, neurotrophic factor production and increases neuronal survival. Our study uncovers an important mechanism by which CP-AMPARs regulate the growth and phenotype of epNSPCs, which can be targeted therapeutically to harness the regenerative potential of these cells after injury.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article