Your browser doesn't support javascript.
loading
Investigation of Carbon Fibres Reclamation by Pyrolysis Process for Their Reuse Potential.
Termine, Stefania; Naxaki, Valentina; Semitekolos, Dionisis; Trompeta, Aikaterini-Flora; Rovere, Massimo; Tagliaferro, Alberto; Charitidis, Costas.
Afiliação
  • Termine S; Research Lab of Advanced, Composite, Nano Materials & Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon, Polytechniou St., Zografos, 15780 Athens, Greece.
  • Naxaki V; Research Lab of Advanced, Composite, Nano Materials & Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon, Polytechniou St., Zografos, 15780 Athens, Greece.
  • Semitekolos D; Research Lab of Advanced, Composite, Nano Materials & Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon, Polytechniou St., Zografos, 15780 Athens, Greece.
  • Trompeta AF; Research Lab of Advanced, Composite, Nano Materials & Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon, Polytechniou St., Zografos, 15780 Athens, Greece.
  • Rovere M; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
  • Tagliaferro A; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
  • Charitidis C; Research Lab of Advanced, Composite, Nano Materials & Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon, Polytechniou St., Zografos, 15780 Athens, Greece.
Polymers (Basel) ; 15(3)2023 Feb 02.
Article em En | MEDLINE | ID: mdl-36772070
During Carbon Fibre Reinforced Polymers (CFRPs) manufacturing, large quantities of scrap are being produced and usually disposed to landfill or incinerated, resulting in a high environmental impact. Furthermore, CFRP parts that have been damaged or reached their end-of-life, follow the same disposal route and because of this, not only the environment is affected, but also high added-value materials, such as carbon fibres (CFs) are lost without further valorisation. Several recycling technologies have been suggested, such as pyrolysis, to retrieve the CF reinforcement from the CFRPs. However, pyrolysis produces CFs that have residual resin and pyrolytic carbon at their surface. In order to retrieve clean long fibres, oxidation treatment in high temperatures is required. The oxidation treatment, however, has a high impact on the mechanical properties of the reclaimed CFs; therefore, an optimised pyrolysis procedure of CFRPs and post-pyrolysis treatment of reclaimed fibres (rCFs) is required. In this study, CFRPs have been subjected to pyrolysis to investigate the reclamation of CF fabrics in their primal form. The temperature of 550 °C was selected as the optimum processing temperature for the investigated composites. A parametric study on the post-pyrolysis treatment was performed in order to remove the residues from the fabrics and at the same time to investigate the CFs reusability, in terms of their mechanical and surface properties.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article