Your browser doesn't support javascript.
loading
Organic substitution stimulates ammonia oxidation-driven N2O emissions by distinctively enriching keystone species of ammonia-oxidizing archaea and bacteria in tropical arable soils.
Zhang, Qi; Chen, Miao; Leng, Youfeng; Wang, Xiaotong; Fu, Yajun; Wang, Danfeng; Zhao, Xiongwei; Gao, Wenlong; Li, Ning; Chen, Xin; Fan, Changhua; Li, Qinfen.
Afiliação
  • Zhang Q; College of Ecology and Environment, Hainan University, Haikou 570228, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  • Chen M; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Key Laboratory of
  • Leng Y; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Eco-environment Engineering, Guizhou Minzu University, Guiyang 550025, China.
  • Wang X; College of Ecology and Environment, Hainan University, Haikou 570228, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  • Fu Y; College of Ecology and Environment, Hainan University, Haikou 570228, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  • Wang D; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Zhao X; College of Ecology and Environment, Hainan University, Haikou 570228, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  • Gao W; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Key Laboratory of
  • Li N; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Key Laboratory of
  • Chen X; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Key Laboratory of
  • Fan C; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Key Laboratory of
  • Li Q; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Key Laboratory of
Sci Total Environ ; 872: 162183, 2023 May 10.
Article em En | MEDLINE | ID: mdl-36804975
ABSTRACT
Partial organic substitution (POS) is pivotal in enhancing soil productivity and changing nitrous oxide (N2O) emissions by profoundly altering soil nitrogen (N) cycling, where ammonia oxidation is a fundamental core process. However, the regulatory mechanisms of N2O production by ammonia oxidizers at the microbial community level under POS regimes remain unclear. This study explored soil ammonia oxidation and related N2O production, further building an understanding of the correlations between ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) activity and community structure in tropical arable soils under four-year field management regimes (CK, without fertilizer N; N, with only inorganic N; M1N1, with 1/2 organic N + 1/2 inorganic N; M1N2, with 1/3 organic N + 2/3 inorganic N). AOA contributed more to potential ammonia oxidation (PAO) than AOB across all treatments. In comparison with CK, N treatment had no obvious effects on PAO and lowered related N2O emissions by decreasing soil pH and downregulating the abundance of AOA- and AOB-amoA. POS regimes significantly enhanced PAO and N2O emissions relative to N treatment by promoting the abundances and contributions of AOA and AOB. The stimulated AOA-dominated N2O production under M1N1 was correlated with promoted development of Nitrososphaera. By contrast, the increased AOB-dominated N2O production under M1N2 was linked to the enhanced development of Nitrosospira multiformis. Our study suggests organic substitutions with different proportions of inorganic and organic N distinctively regulate the development of specific species of ammonia oxidizers to increase associated N2O emissions. Accordingly, appropriate options should be adopted to reduce environmental risks under POS regimes in tropical croplands.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article