Your browser doesn't support javascript.
loading
Poincaré maps for visualization of large protein families.
Susmelj, Anna Klimovskaia; Ren, Yani; Vander Meersche, Yann; Gelly, Jean-Christophe; Galochkina, Tatiana.
Afiliação
  • Susmelj AK; Swiss Data Science Center, ETH Zurich and EPFL, Zurich, Switzerland.
  • Ren Y; Biognosys AG, Wagistrasse 21, 8952 Schlieren, Switzerland.
  • Vander Meersche Y; Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France.
  • Gelly JC; Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France.
  • Galochkina T; Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France.
Brief Bioinform ; 24(3)2023 05 19.
Article em En | MEDLINE | ID: mdl-36946414
In the era of constantly increasing amounts of the available protein data, a relevant and interpretable visualization becomes crucial, especially for tasks requiring human expertise. Poincaré disk projection has previously demonstrated its important efficiency for visualization of biological data such as single-cell RNAseq data. Here, we develop a new method PoincaréMSA for visual representation of complex relationships between protein sequences based on Poincaré maps embedding. We demonstrate its efficiency and potential for visualization of protein family topology as well as evolutionary and functional annotation of uncharacterized sequences. PoincaréMSA is implemented in open source Python code with available interactive Google Colab notebooks as described at https://www.dsimb.inserm.fr/POINCARE_MSA.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article