Your browser doesn't support javascript.
loading
VCE-005.1, an hypoxia mimetic betulinic acid derivative, induces angiogenesis and shows efficacy in a murine model of traumatic brain injury.
Prados, María Eugenia; Navarrete, Carmen; García-Martín, Adela; Lastres-Cubillo, Isabel; Ponce-Díaz, Francisco; Martínez-Orgado, José; Muñoz, Eduardo.
Afiliação
  • Prados ME; VivaCell Biotechnology España, Cordoba, Spain.
  • Navarrete C; Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain.
  • García-Martín A; Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain.
  • Lastres-Cubillo I; Maimonides Biomedical Research Institute of Cordoba, Spain.
  • Ponce-Díaz F; Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain.
  • Martínez-Orgado J; Hospital Clínico San Carlos - IdISSC, Madrid, Spain.
  • Muñoz E; Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain. Electronic address: fi1muble@uco.es.
Biomed Pharmacother ; 162: 114715, 2023 Jun.
Article em En | MEDLINE | ID: mdl-37075665
One of the main global causes of mortality and morbidity is traumatic brain injury (TBI). Neuroinflammation and brain-blood barrier (BBB) disruption play a pivotal role in the pathogenesis of acute and chronic TBI onset. The activation of the hypoxia pathway is a promising approach for CNS neurodegenerative diseases, including TBI. Herein, we have studied the efficacy of VCE-005.1, a betulinic acid hydroxamate, against acute neuroinflammation in vitro and on a TBI mouse model. The effect of VCE-005.1 on the HIF pathway in endothelial vascular cells was assessed by western blot, gene expression, in vitro angiogenesis, confocal analysis and MTT assays. In vivo angiogenesis was evaluated through a Matrigel plug model and a mouse model of TBI induced by a controlled cortical impact (CCI) was used to assess VCE-005.1 efficacy. VCE-005.1 stabilized HIF-1α through a mechanism that involved AMPK and stimulated the expression of HIF-dependent genes. VCE-005.1 protected vascular endothelial cells under prooxidant and pro-inflammatory conditions by enhancing TJ protein expression and induced angiogenesis both in vitro and in vivo. Furthermore, in CCI model, VCE-005.1 greatly improved locomotor coordination, increased neovascularization and preserved BBB integrity that paralleled with a large reduction of peripheral immune cells infiltration, recovering AMPK expression and reducing apoptosis in neuronal cells. Taken together, our results demonstrate that VCE-005.1 is a multitarget compound that shows anti-inflammatory and neuroprotective effects mainly by preventing BBB disruption and has the potential to be further developed pharmacologically in TBI and maybe other neurological conditions that concur with neuroinflammation and BBB disruption.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article