Your browser doesn't support javascript.
loading
CDC20 Is Regulated by the Histone Methyltransferase, KMT5A, in Castration-Resistant Prostate Cancer.
Alebady, Zainab A H; Azizyan, Mahsa; Nakjang, Sirintra; Lishman-Walker, Emma; Al-Kharaif, Dhuha; Walker, Scott; Choo, Hui Xian; Garnham, Rebecca; Scott, Emma; Johnson, Katya L; Robson, Craig N; Coffey, Kelly.
Afiliação
  • Alebady ZAH; Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Azizyan M; Department of Laboratory and Clinical Science, College of Pharmacy, University of AL-Qadisiyah, Al-Diwaniya 58002, Iraq.
  • Nakjang S; Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Lishman-Walker E; Bioinformatics Support Unit, Newcastle University, Newcastle NE2 4HH, UK.
  • Al-Kharaif D; Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Walker S; Medical Laboratory Technology Department, College of Health Sciences, Public Authority of Applied Education and Training, Safat 13092, Kuwait.
  • Choo HX; School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Garnham R; Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Scott E; Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Johnson KL; Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Robson CN; Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
  • Coffey K; Translational and Clinical Research Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
Cancers (Basel) ; 15(14)2023 Jul 13.
Article em En | MEDLINE | ID: mdl-37509260
The methyltransferase KMT5A has been proposed as an oncogene in prostate cancer and therefore represents a putative therapeutic target. To confirm this hypothesis, we have performed a microarray study on a prostate cancer cell line model of androgen independence following KMT5A knockdown in the presence of the transcriptionally active androgen receptor (AR) to understand which genes and cellular processes are regulated by KMT5A in the presence of an active AR. We observed that 301 genes were down-regulated whilst 408 were up-regulated when KMT5A expression was reduced. KEGG pathway and gene ontology analysis revealed that apoptosis and DNA damage signalling were up-regulated in response to KMT5A knockdown whilst protein folding and RNA splicing were down-regulated. Under these conditions, the top non-AR regulated gene was found to be CDC20, a key regulator of the spindle assembly checkpoint with an oncogenic role in several cancer types. Further investigation revealed that KMT5A regulates CDC20 in a methyltransferase-dependent manner to modulate histone H4K20 methylation within its promoter region and indirectly via the p53 signalling pathway. A positive correlation between KMT5A and CDC20 expression was also observed in clinical prostate cancer samples, further supporting this association. Therefore, we conclude that KMT5A is a valid therapeutic target for the treatment of prostate cancer and CDC20 could potentially be utilised as a biomarker for effective therapeutic targeting.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article