Your browser doesn't support javascript.
loading
A Dual-Function Hemicyanine Material with Highly Efficient Photothermal and Photodynamic Effect Used for Tumor Therapy.
Zhang, Minglu; Wang, Shuo; Bai, Yueping; Wang, Danyang; Fu, Yu; Su, Zongyi; Zhang, Guoqiang; Meng, Meng; Yu, Fan; Wang, Bing; Jin, Hongzhen; Zhao, Wei.
Afiliação
  • Zhang M; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China.
  • Wang S; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
  • Bai Y; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China.
  • Wang D; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China.
  • Fu Y; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China.
  • Su Z; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China.
  • Zhang G; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P. R. China.
  • Meng M; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
  • Yu F; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China.
  • Wang B; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China.
  • Jin H; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
  • Zhao W; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
Adv Healthc Mater ; 13(10): e2303432, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38069831
ABSTRACT
Small molecular organic optical agents with synergistic effects of photothermal therapy (PTT) and photodynamic therapy (PDT), hold credible promise for anti-tumor therapy by overcoming individual drawbacks and enhancing photon utilization efficiency. However, developing effective dual-function PTT-PDT photosensitizers (PSs) for efficient synergistic phototherapy remains challenging. Here, a benz[c,d]indolium-substituted hemicyanine named Rh-BI, which possesses a high photothermal conversion efficiency of 41.67% by exhaustively suppressing fluorescence emission, is presented. Meanwhile, the rotating phenyl group at meso-site induces charge recombination to enhance the molar extinction coefficient up to 13.58 × 104 M-1cm-1, thereby potentiating the photodynamic effect. Under 808 nm irradiation, Rh-BI exhibits significant phototoxicity in several cancer cell types in vitro with IC50 values as low as ≈0.5 µM. Moreover, treatment of 4T1 tumor-bearing mice with Rh-BI under laser irradiation successfully inhibits tumor growth. In a word, an effective strategy is developed to build PTT-PDT dual-functional optical materials based on hemicyanine backbone for tumor therapy by modulating conjugation system interaction to adjust the energy consumption pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article