Your browser doesn't support javascript.
loading
Pulmonary Hypertension Induces Serotonin Hyperreactivity and Metabolic Reprogramming in Coronary Arteries via NOX1/4-TRPM2 Signaling Pathway.
Huang, Yan-Zhen; Wu, Ji-Chun; Lu, Gui-Feng; Li, Hui-Bin; Lai, Su-Mei; Lin, Yi-Chen; Gui, Long-Xin; Sham, James S K; Lin, Mo-Jun; Lin, Da-Cen.
Afiliação
  • Huang YZ; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou
  • Wu JC; Beijing Institutes of Life Science, Chinese Academy of Sciences, China (J.-C.W.).
  • Lu GF; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou
  • Li HB; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou
  • Lai SM; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou
  • Lin YC; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou
  • Gui LX; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou
  • Sham JSK; Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (J.S.K.S.).
  • Lin MJ; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou
  • Lin DC; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou
Hypertension ; 81(3): 582-594, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38174565
ABSTRACT

BACKGROUND:

Clinical evidence revealed abnormal prevalence of coronary artery (CA) disease in patients with pulmonary hypertension (PH). The mechanistic connection between PH and CA disease is unclear. Serotonin (5-hydroxytryptamine), reactive oxygen species, and Ca2+ signaling have been implicated in both PH and CA disease. Our recent study indicates that NOXs (NADPH [nicotinamide adenine dinucleotide phosphate] oxidases) and TRPM2 (transient receptor potential cation channel subfamily M member 2) are key components of their interplay. We hypothesize that activation of the NOX-TRPM2 pathway facilitates the remodeling of CA in PH.

METHODS:

Left and right CAs from chronic hypoxia and monocrotaline-induced PH rats were collected to study vascular reactivity, gene expression, metabolism, and mitochondrial function. Inhibitors or specific siRNA were used to examine the pathological functions of NOX1/4-TRPM2 in CA smooth muscle cells.

RESULTS:

Significant CA remodeling and 5-hydroxytryptamine hyperreactivity in the right CA were observed in PH rats. NOX1/4-mediated reactive oxygen species production coupled with TRPM2-mediated Ca2+ influx contributed to 5-hydroxytryptamine hyperresponsiveness. CA smooth muscle cells from chronic hypoxia-PH rats exhibited increased proliferation, migration, apoptosis, and metabolic reprogramming in an NOX1/4-TRPM2-dependent manner. Furthermore, the NOX1/4-TRPM2 pathway participated in mitochondrial dysfunction, involving mitochondrial DNA damage, reactive oxygen species production, elevated mitochondrial membrane potential, mitochondrial Ca2+ accumulation, and mitochondrial fission. In vivo knockdown of NOX1/4 alleviated PH and suppressed CA remodeling in chronic hypoxia rats.

CONCLUSIONS:

PH triggers an increase in 5-hydroxytryptamine reactivity in the right CA and provokes metabolic reprogramming and mitochondrial disruption in CA smooth muscle cells via NOX1/4-TRPM2 activation. This signaling pathway may play an important role in CA remodeling and CA disease in PH.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article