Your browser doesn't support javascript.
loading
How Chromophore Labels Shape the Structure and Dynamics of a Peptide Hydrogel.
Heinz, Frederick; Proksch, Jonas; Schmidt, Robert F; Gradzielski, Michael; Koksch, Beate; Keller, Bettina G.
Afiliação
  • Heinz F; Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.
  • Proksch J; Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.
  • Schmidt RF; Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Berlin 10623, Germany.
  • Gradzielski M; Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Berlin 10623, Germany.
  • Koksch B; Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.
  • Keller BG; Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.
Biomacromolecules ; 25(2): 1262-1273, 2024 Feb 12.
Article em En | MEDLINE | ID: mdl-38288602
ABSTRACT
Biocompatible and functionalizable hydrogels have a wide range of (potential) medicinal applications. The hydrogelation process, particularly for systems with very low polymer weight percentages (<1 wt %), remains poorly understood, making it challenging to predict the self-assembly of a given molecular building block into a hydrogel. This severely hinders the rational design of self-assembled hydrogels. In this study, we demonstrate the impact of an N-terminal group on the self-assembly and rheology of the peptide hydrogel hFF03 (hydrogelating, fibril forming peptide 03) using molecular dynamics simulations, oscillatory shear rheology, and circular dichroism spectroscopy. We find that the chromophore and even its specific regioisomers have a significant influence on the microscopic structure and dynamics of the self-assembled fibril, and on the macroscopic mechanical properties. This is because the chromophore influences the possible salt bridges, which form and stabilize the fibril formation. Furthermore, we find that the solvation shell fibrils by itself cannot explain the viscoelasticity of hFF03 hydrogels. Our atomistic model of the hFF03 fibril formation enables a more rational design of these hydrogels. In particular, altering the N-terminal chromophore emerges as a design strategy to tune the mechanic properties of these self-assembled peptide hydrogels.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article