Your browser doesn't support javascript.
loading
Polyphenylene Oxide Film Sandwiched between SiO2 Layers for High-Temperature Dielectric Energy Storage.
Dai, Zhizhan; Jia, Jiangheng; Ding, Song; Wang, Yiwei; Meng, Xiangsen; Bao, Zhiwei; Yu, Shuhong; Shen, Shengchun; Yin, Yuewei; Li, Xiaoguang.
Afiliação
  • Dai Z; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
  • Jia J; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
  • Ding S; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
  • Wang Y; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
  • Meng X; Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
  • Bao Z; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
  • Yu S; Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
  • Shen S; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
  • Yin Y; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
  • Li X; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.
ACS Appl Mater Interfaces ; 16(10): 12865-12872, 2024 Mar 13.
Article em En | MEDLINE | ID: mdl-38416689
ABSTRACT
The commercial capacitor using dielectric biaxially oriented polypropylene (BOPP) can work effectively only at low temperatures (less than 105 °C). Polyphenylene oxide (PPO), with better heat resistance and a higher dielectric constant, is promising for capacitors operating at elevated temperatures, but its charge-discharge efficiency (η) degrades greatly under high fields at 125 °C. Here, SiO2 layers are magnetron sputtered on both sides of the PPO film, forming a composite material of SiO2/PPO/SiO2. Due to the wide bandgap and high Young's modulus of SiO2, the breakdown strength (Eb) of this composite material reaches 552 MV/m at 125 °C (PPO 534 MV/m), and the discharged energy density (Ue) under Eb improves to 3.5 J/cm3 (PPO 2.5 J/cm3), with a significantly enhanced η of 89% (PPO 70%). Furthermore, SiO2/PPO/SiO2 can discharge a Ue of 0.45 J/cm3 with an η of 97% at 125 °C under 200 MV/m (working condition in hybrid electric vehicles) for 20,000 cycles, and this value is higher than the energy density (∼0.39 J/cm3 under 200 MV/m) of BOPP at room temperature. Interestingly, the metalized SiO2/PPO/SiO2 film exhibits valuable self-healing behavior. These results make PPO-based dielectrics promising for high-temperature capacitor applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article