Your browser doesn't support javascript.
loading
Expression of immuno-transcriptome response in red hybrid tilapia (Oreochromis sp.) hindgut following vaccination with feed-based bivalent vaccine.
Ali, Nur Shidaa Mohd; Ngalimat, Mohamad Syazwan; Saad, Mohd Zamri; Azmai, Mohammad Noor Amal; Salleh, Annas; Zulperi, Zarirah; Md Yasin, Ina Salwany.
Afiliação
  • Ali NSM; Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • Ngalimat MS; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • Saad MZ; Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • Azmai MNA; Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • Salleh A; Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • Zulperi Z; Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • Md Yasin IS; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
J Fish Dis ; 47(7): e13943, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38481095
ABSTRACT
Streptococcosis and aeromoniasis are the main obstacles to sustainable tilapia production. Vaccination offered an effective method to control microbial infections. Previously, a feed-based bivalent vaccine (FBBV) containing killed whole organisms of Streptococcus agalactiae and Aeromonas hydrophila mixed with 10% palm oil was successfully developed, which provided good protection against streptococcosis and aeromoniasis in Oreochromis sp. However, the mechanisms of immunities in vaccinated fish still need clarification. Here, the hindgut transcriptome of vaccinated and control fish was determined, as the gut displays higher affinity towards antigen uptake and nutrient absorption. The efficacy of FBBV to improve fish immunity was evaluated according to the expression of immune-related genes in the vaccinated fish hindgut throughout the 8-week experimental period using RT-qPCR. The vaccinated fish hindgut at week 6 was further subjected to transcriptomic analysis due to the high expression of immune-related genes and contained killed whole organisms. Results demonstrated the expression of immune-related genes was in correlation with the presence of killed whole organisms in the vaccinated fish hindgut. Transcriptomic analysis has allowed the prediction of robust immune-related pathways, including innate and adaptive immunological responses in vaccinated fish hindgut than control fish. Pathways related to the regulation of lipid metabolism and modulation of the immune system were also significantly enriched (p ≤ .05). Overall, results offer a fundamental study on understanding the immunological response in Oreochromis sp. following vaccination with the FBBV pellet and support further application to prevent bacterial diseases in aquaculture.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article