Your browser doesn't support javascript.
loading
Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform.
Sturm, Alexander; Józwiak, Grzegorz; Verge, Marta Pla; Munch, Laura; Cathomen, Gino; Vocat, Anthony; Luraschi-Eggemann, Amanda; Orlando, Clara; Fromm, Katja; Delarze, Eric; Swiatkowski, Michal; Wielgoszewski, Grzegorz; Totu, Roxana M; García-Castillo, María; Delfino, Alexandre; Tagini, Florian; Kasas, Sandor; Lass-Flörl, Cornelia; Gstir, Ronald; Cantón, Rafael; Greub, Gilbert; Cichocka, Danuta.
Afiliação
  • Sturm A; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland. alex.sturm@resistell.com.
  • Józwiak G; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Verge MP; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Munch L; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Cathomen G; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Vocat A; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Luraschi-Eggemann A; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Orlando C; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Fromm K; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Delarze E; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Swiatkowski M; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Wielgoszewski G; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • Totu RM; Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
  • García-Castillo M; Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain.
  • Delfino A; Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland.
  • Tagini F; Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland.
  • Kasas S; Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), 1015, Lausanne, Switzerland.
  • Lass-Flörl C; Centre Universitaire Romand de Médecine Légale (UFAM) & Université de Lausanne (UNIL), 1015, Lausanne, Switzerland.
  • Gstir R; Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.
  • Cantón R; Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.
  • Greub G; Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain.
  • Cichocka D; CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Sinesio Delgado 4, 28029, Madrid, Spain.
Nat Commun ; 15(1): 2037, 2024 Mar 18.
Article em En | MEDLINE | ID: mdl-38499536
ABSTRACT
Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article