Your browser doesn't support javascript.
loading
Enhancing simultaneous saccharification and co-fermentation of corncob by Kluyveromyces marxianus through overexpression of putative transcription regulator.
Zhang, Kehui; Jiang, Ziyun; Li, Xingjiang; Wang, Dongmei; Hong, Jiong.
Afiliação
  • Zhang K; School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, Anhui, China.
  • Jiang Z; School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
  • Li X; School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.
  • Wang D; School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, Anhui, China.
  • Hong J; School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China; Hefei National Laboratory for Physical Science at the Microscale, Hefei 230026, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China
Bioresour Technol ; 399: 130627, 2024 May.
Article em En | MEDLINE | ID: mdl-38522677
ABSTRACT
Overexpression of a gene with unknown function in Kluyveromyces marxianus markedly improved tolerance to lignocellulosic biomass-derived inhibitors. This overexpression also enhanced tolerance to elevated temperatures, ethanol, and high concentrations of NaCl and glucose. Inhibitor degradation and transcriptome analyses related this K. marxianusMultiple Stress Resistance (KmMSR) gene to the robustness of yeast cells. Nuclear localization and DNA-binding domain analyses indicate that KmMsr is a putative transcriptional regulator. Overexpression of a mutant protein with deletion in the flexible region between amino acids 100 and 150 further enhanced tolerance to multiple inhibitors during fermentation, with ethanol production and productivity increasing by 36.31 % and 80.22 %, respectively. In simultaneous saccharification co-fermentation of corncob without detoxification, expression of KmMSR with the deleted flexible region improved ethanol production by 5-fold at 42 °C and 2-fold at 37 °C. Overexpression of the KmMSR mutant provides a strategy for constructing robust lignocellulosic biomass using strains.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article