Your browser doesn't support javascript.
loading
Reversing Anticancer Drug Resistance by Synergistic Combination of Chemotherapeutics and Membranolytic Antitumor ß-Peptide Polymer.
Shao, Ning; Yuan, Ling; Liu, Longqiang; Cong, Zihao; Wang, Jiangzhou; Wu, Yueming; Liu, Runhui.
Afiliação
  • Shao N; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
  • Yuan L; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials
  • Liu L; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials
  • Cong Z; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials
  • Wang J; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials
  • Wu Y; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials
  • Liu R; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
J Am Chem Soc ; 2024 Apr 11.
Article em En | MEDLINE | ID: mdl-38602146
ABSTRACT
Multidrug resistance is the main obstacle to cancer chemotherapy. Overexpression of drug efflux pumps causes excessive drug efflux from cancer cells, ultimately leading to drug resistance. Hereby, we raise an effective strategy to overcome multidrug resistance using a synergistic combination of membranolytic antitumor ß-peptide polymer and chemotherapy drugs. This membrane-active ß-peptide polymer promotes the transmembrane transport of chemotherapeutic drugs by increasing membrane permeability and enhances the activity of chemotherapy drugs against multidrug-resistant cancer cells. As a proof-of-concept demonstration, the synergistic combination of ß-peptide polymer and doxorubicin (DOX) is substantially more effective than DOX alone against drug-resistant cancer both in vitro and in vivo. Notably, the synergistic combination maintains a potent anticancer activity after continuous use. Collectively, this combination therapy using membrane lytic ß-peptide polymer appears to be an effective strategy to reverse anticancer drug resistance.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article