In silico study on graphene quantum dots modified with various functional groups inhibiting αsynuclein dimerization.
J Colloid Interface Sci
; 667: 723-730, 2024 Aug.
Article
em En
| MEDLINE
| ID: mdl-38641462
ABSTRACT
HYPOTHESIS:
Graphene quantum dots (GQDs) with various functional groups are hypothesized to inhibit the α-synuclein (αS) dimerization, a crucial step in Parkinson's disease pathogenesis. The potential of differently functionalized GQDs is systematically explored. EXPERIMENTS All-atom replica-exchange molecular dynamics simulations (accumulating to 75.6 µs) in explicit water were performed to study the dimerization of the αS non-amyloid component region and the influence of GQDs modified with various functional groups. Conformation ensemble, binding behavior, and free energy analysis were conducted.FINDINGS:
All studied GQDs inhibit ß-sheet and backbone hydrogen bond formation in αS dimers, leading to looser oligomeric conformations. Charged GQDs severely impede the growth of extended ß-sheets by providing extra contact surface. GQD binding primarily disrupts αS inter-peptide interactions through π-π stacking, CH-π interactions, and for charged GQDs, additionally through salt-bridge and hydrogen bonding interactions. GQD-COO- showed the most optimal inhibitory effect, binding mode, and intensity, which holds promise for the development of nanomedicines targeting amyloid aggregation in neurodegenerative diseases.Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article