Your browser doesn't support javascript.
loading
Unveiling the activity difference cause and ring-opening reaction routes of typical radicals induced degradation of toluene.
Qian, Zhen; Guo, Yongxue; Luo, Mengchao; Yang, Lijuan; Liu, Siqi; Qin, Peng; Yuan, Bo; Liu, Feng; Hao, Runlong.
Afiliação
  • Qian Z; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineeri
  • Guo Y; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineeri
  • Luo M; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China.
  • Yang L; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineeri
  • Liu S; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China.
  • Qin P; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China.
  • Yuan B; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineeri
  • Liu F; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineeri
  • Hao R; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineeri
J Hazard Mater ; 471: 134273, 2024 Jun 05.
Article em En | MEDLINE | ID: mdl-38653137
ABSTRACT
This study employs five UV-AOPs (PMS, PDS, H2O2, NaClO and NaClO2) to produce radicals (•OH, SO4•-, ClO•, O2•- and 1O2) and further comparatively studies their activity sequence and activity difference cause in toluene degradation. The toluene mineralization efficiency as a descending order is 73 % (UV-PMS) > 71 % (UV-PDS) > 70 % (acidified-UV-NaClO) > 55 % (UV-H2O2) > 36 % (UV-NaClO) > 35 % (UV-NaClO2); that of conversion efficiency is 99 % (acidified-UV-NaClO) > 95 % (UV-PMS) > 90 % (UV-PDS) > 74 % (UV-H2O2) > 44 % (UV-NaClO) > 41 % (UV-NaClO2). Acidic pretreatment significantly boosts the reactivity of UV-NaClO. ESR combined with radical quenching tests reveals the radicals' generation and evolution, and their contribution rates to toluene conversion, i.e. ClO• > SO4•- > O2•- > 1O2 > â€¢OH. Theoretical calculations further unveil the ring-opening reaction routes and the nature of the activity difference of different radicals. The minimum energy required for ring-opening reaction is 116.77, 150.63, 168.29 and 191.92 kJ/mol with respect to ClO•, SO4•-, 1O2 and •OH, and finding that the ClO•-HO• pair is the best for toluene mineralization. The difficulty for eliminating typical VOCs by using UV-AOPs method is determined as toluene > chlorobenzene > benzene > ethyl acetate.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article