Your browser doesn't support javascript.
loading
Predicting the stereoselectivity of chemical reactions by composite machine learning method.
Chung, Jihoon; Li, Justin; Saimon, Amirul Islam; Hong, Pengyu; Kong, Zhenyu.
Afiliação
  • Chung J; Department of Industrial Engineering, Pusan National University, Busan, Korea.
  • Li J; Management, Entrepreneurship, and Technology, University of California, Berkeley, CA, USA.
  • Saimon AI; Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
  • Hong P; Department of Computer Science, Brandeis University, Waltham, MA, USA. hongpeng@brandeis.edu.
  • Kong Z; Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA. zkong@vt.edu.
Sci Rep ; 14(1): 12131, 2024 May 27.
Article em En | MEDLINE | ID: mdl-38802415
ABSTRACT
Stereoselective reactions have played a vital role in the emergence of life, evolution, human biology, and medicine. However, for a long time, most industrial and academic efforts followed a trial-and-error approach for asymmetric synthesis in stereoselective reactions. In addition, most previous studies have been qualitatively focused on the influence of steric and electronic effects on stereoselective reactions. Therefore, quantitatively understanding the stereoselectivity of a given chemical reaction is extremely difficult. As proof of principle, this paper develops a novel composite machine learning method for quantitatively predicting the enantioselectivity representing the degree to which one enantiomer is preferentially produced from the reactions. Specifically, machine learning methods that are widely used in data analytics, including Random Forest, Support Vector Regression, and LASSO, are utilized. In addition, the Bayesian optimization and permutation importance tests are provided for an in-depth understanding of reactions and accurate prediction. Finally, the proposed composite method approximates the key features of the available reactions by using Gaussian mixture models, which provide suitable machine learning methods for new reactions. The case studies using the real stereoselective reactions show that the proposed method is effective and provides a solid foundation for further application to other chemical reactions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article