Your browser doesn't support javascript.
loading
Dual inhibition of AKT and ERK1/2 pathways restores the expression of progesterone Receptor-B in endometriotic lesions through epigenetic mechanisms.
Dutta, Sudipta; Lee, JeHoon; Banu, Sakhila K; Arosh, Joe A.
Afiliação
  • Dutta S; Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA.
  • Lee J; Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA.
  • Banu SK; Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA.
  • Arosh JA; Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA. Electronic address: jarosh@cvm.tamu.edu.
Mol Cell Endocrinol ; 592: 112290, 2024 Oct 01.
Article em En | MEDLINE | ID: mdl-38825223
ABSTRACT
Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory disease of reproductive-age women. Progesterone resistance, loss of progesterone receptor -B (PR-B) in the stromal cells of the endometrium, is one of the hallmarks of endometriosis and a major contributing factor for infertility in endometriosis patients. Loss of PR-B in the stromal cells of the endometriotic lesions poses resistance to the success of progesterone-based therapy. The working hypothesis is that PR-B is hypermethylated and epigenetically silenced, and inhibition of AKT and ERK1/2 pathways will decrease the hypermethylation, reverse the epigenetic silencing, and restore the expression of PR-B via DNA methylation and histone modification mechanisms in the endometriotic lesions. The objectives are to (i) determine the effects of dual inhibition of AKT and ERK1/2 pathways on the expression of PR-B and DNA methylation and histone modification protein machinery in the endometriotic lesions and (ii) identify the underlying epigenetic mechanisms of PR-B restoration in the endometriotic lesions. The results indicate that dual inhibition of AKT and ERK1/2 pathways decreases the hypermethylation, reverses the epigenetic silencing, and restores the expression of PR-B via DNA methylation and H3K9 and H3K27 methylation mechanisms in the endometriotic lesions or endometriotic stromal cells of human origin. These results support the novel concept that restored expression of PR-B in the endometriotic lesions and endometrium may improve the clinical outcome of progesterone therapy in endometriosis patients.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Adult / Female / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Adult / Female / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article