Your browser doesn't support javascript.
loading
Comparative analysis of thrombin generation platforms for patients with coagulation factor deficiencies: A comprehensive assessment.
Haisma, Bauke; Schols, Saskia E M; van Oerle, René G M; Verbeek-Knobbe, Kitty; Hellenbrand, Dave; Verwoerd, Evelien J; Heubel-Moenen, Floor C J I; Stroobants, An K; Meijer, Danielle; Rijpma, Sanna R; Henskens, Yvonne M C.
Afiliação
  • Haisma B; Department of Hematology, Radboud university medical center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands. Electronic address: bauke.haisma@radboudumc.nl.
  • Schols SEM; Department of Hematology, Radboud university medical center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands. Electronic address: saskia.schols@radboudumc.nl.
  • van Oerle RGM; Central Diagnostic Laboratory, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands; Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands. Electronic address: rene
  • Verbeek-Knobbe K; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands. Electronic address: k
  • Hellenbrand D; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Central Diagnostic Laboratory, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands. Electronic address: dave.hellenbrand@mumc.nl.
  • Verwoerd EJ; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands. Electronic address: e
  • Heubel-Moenen FCJI; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Hematology, Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands. Electronic address: floor.moenen@mumc.nl.
  • Stroobants AK; Department of Laboratory Medicine, Radboudumc Laboratory of Diagnostics, Radboud university medical center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands. Electronic address: an.stroobants@radboudumc.nl.
  • Meijer D; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands. Electronic address: d
  • Rijpma SR; Department of Hematology, Radboud university medical center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands. Electronic address:
  • Henskens YMC; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Central Diagnostic Laboratory, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands; Biochemistry, Cardiovascular Research Institute Maastri
Thromb Res ; 240: 109045, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38834002
ABSTRACT

INTRODUCTION:

Thrombin generation assays (TGAs) assess the overall functionality of the hemostatic system and thereby provide a reflection of the hemostatic capacity of patients with disorders in this system. Currently, four (semi-)automated TGA platforms are available the Calibrated Automated Thrombogram, Nijmegen Hemostasis Assay, ST Genesia and Ceveron s100. In this study, we compared their performance for detecting patients with congenital single coagulation factor deficiencies. MATERIALS AND

METHODS:

Pooled patient samples, healthy control samples and normal pooled plasma were tested on all four platforms, using the available reagents that vary in tissue factor and phospholipid concentrations. The TGA parameters selected for analysis were peak height and thrombin potential. Results were normalized by using the calculated mean of healthy controls and a correction for between-run variation. Outcomes were presented as relative values, with the mean of healthy controls standardized to 100 %.

RESULTS:

Across all platforms and reagents used, thrombin potentials and peak heights of samples with coagulation factor deficiencies were lower than those of healthy controls. Reagents designed for bleeding tendencies yielded the lowest values on all platforms (relative median peak height 19-32 %, relative median thrombin potential 19-45 %). Samples representing more severe coagulation factor deficiencies generally exhibited lower relative peak heights and thrombin potentials.

CONCLUSIONS:

Thrombin generation assays prove effective in differentiating single coagulation factor deficient samples from healthy controls, with modest discrepancies observed between the platforms. Reagents designed for assessing bleeding tendencies, featuring the lowest tissue factor and phospholipid concentrations, emerged as the most suitable option for detecting coagulation factor deficiencies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article