Your browser doesn't support javascript.
loading
A Video Mosaicing-Based Sensing Method for Chicken Behavior Recognition on Edge Computing Devices.
Teterja, Dmitrij; Garcia-Rodriguez, Jose; Azorin-Lopez, Jorge; Sebastian-Gonzalez, Esther; Nedic, Daliborka; Lekovic, Dalibor; Knezevic, Petar; Drajic, Dejan; Vukobratovic, Dejan.
Afiliação
  • Teterja D; Department of Computer Science and Technology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain.
  • Garcia-Rodriguez J; Department of Computer Science and Technology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain.
  • Azorin-Lopez J; Department of Computer Science and Technology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain.
  • Sebastian-Gonzalez E; Department of Ecology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain.
  • Nedic D; DunavNet DOO, Bulevar Oslobodenja 133/2, 21000 Novi Sad, Serbia.
  • Lekovic D; DunavNet DOO, Bulevar Oslobodenja 133/2, 21000 Novi Sad, Serbia.
  • Knezevic P; DunavNet DOO, Bulevar Oslobodenja 133/2, 21000 Novi Sad, Serbia.
  • Drajic D; DunavNet DOO, Bulevar Oslobodenja 133/2, 21000 Novi Sad, Serbia.
  • Vukobratovic D; Paviljon Racunskog Centra, The Department of Telecommunications, School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia.
Sensors (Basel) ; 24(11)2024 May 25.
Article em En | MEDLINE | ID: mdl-38894200
ABSTRACT
Chicken behavior recognition is crucial for a number of reasons, including promoting animal welfare, ensuring the early detection of health issues, optimizing farm management practices, and contributing to more sustainable and ethical poultry farming. In this paper, we introduce a technique for recognizing chicken behavior on edge computing devices based on video sensing mosaicing. Our method combines video sensing mosaicing with deep learning to accurately identify specific chicken behaviors from videos. It attains remarkable accuracy, achieving 79.61% with MobileNetV2 for chickens demonstrating three types of behavior. These findings underscore the efficacy and promise of our approach in chicken behavior recognition on edge computing devices, making it adaptable for diverse applications. The ongoing exploration and identification of various behavioral patterns will contribute to a more comprehensive understanding of chicken behavior, enhancing the scope and accuracy of behavior analysis within diverse contexts.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article