Your browser doesn't support javascript.
loading
Predicting vulnerable carotid plaques by detecting wall shear stress based on ultrasonic vector flow imaging.
Zhang, Xiang; Ding, Huanhuan; Ji, Xiaoli; Chen, Ling; Huang, Peipei; Lin, Zengqiao; Zhu, Jianbi; Zhou, Shujing; Liu, Zezheng; Zhang, Miaomiao; Xu, Qi.
Afiliação
  • Zhang X; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Ding H; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Ji X; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Chen L; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Huang P; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Lin Z; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Zhu J; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Zhou S; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Liu Z; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Zhang M; Department of Ultrasonography, Lingkun Street Community Health Service Center of Dongtou District, Wenzhou, Zhejiang, China.
  • Xu Q; Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address: xuqi403@gmail.com.
J Vasc Surg ; 2024 Jun 24.
Article em En | MEDLINE | ID: mdl-38925348
ABSTRACT

OBJECTIVE:

Carotid plaque vulnerability is a significant factor in the risk of cardiocerebrovascular events, with intraplaque neovascularization (IPN) being a crucial characteristic of plaque vulnerability. This study investigates the value of ultrasound vector flow imaging (V-flow) for measuring carotid plaque wall shear stress (WSS) in predicting the extent of IPN.

METHODS:

We enrolled 140 patients into three groups 53 in the plaque group (72 plaques), 23 in the stenosis group (27 plaques), and 64 in the control group. V-flow was used to measure WSS parameters, including the average WSS (WSS mean) and the maximum WSS (WSS max), across three plaque locations mid-upstream, maximum thickness, and mid-downstream. Contrast-enhanced ultrasound examination was used in 76 patients to analyze IPN and its correlation with WSS parameters.

RESULTS:

WSS max in the stenosis group was significantly higher than that in the control and plaque groups at the maximum thickness part (P < .05) and WSS mean in the stenosis group was significantly lower than that in the control group at the mid-upstream and mid-downstream segments (P < .05). WSS mean in the plaque group was significantly lower than that of the control group at all three locations (P < .05). Contrast-enhanced ultrasound examination revealed that plaques with neovascularization enhancement exhibited significantly higher WSS values (P < .05), with a positive correlation between WSS parameters and IPN enhancement grades, particularly WSS max at the thickest part (r = 0.508). Receiver operating characteristic curve analysis of WSS parameters for evaluating IPN showed that the efficacy of WSS max in evaluating IPN was better than that of WSS mean (P < .05), with an area under the curve of 0.7762 and 0.6973 (95% confidence intervals, 0.725-0.822 and 0.642-0.749, respectively). The cut-offs were 4.57 Pa and 1.12 Pa, sensitivities were 74.03% and 63.64%, and specificities were 75.00% and 68.18%.

CONCLUSIONS:

V-flow effectively measures WSS in carotid plaques. WSS max provides a promising metric for assessing IPN, offering potential insights into plaque characteristics and showing some potential in predicting plaque vulnerability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article