Your browser doesn't support javascript.
loading
Engineered nanomaterials exert sublethal bacterial stress at very low doses: Effects of concentration, light, and media on cell membrane permeability.
Wu, Shushan; Wells, George; Gray, Kimberly A.
Afiliação
  • Wu S; Department of Civil and Environmental Engineering, Northwestern University, USA. Electronic address: shushanwu2023@u.northwestern.edu.
  • Wells G; Department of Civil and Environmental Engineering, Northwestern University, USA. Electronic address: george.wells@northwestern.edu.
  • Gray KA; Department of Civil and Environmental Engineering, Northwestern University, USA. Electronic address: k-gray@northwestern.edu.
Sci Total Environ ; 948: 174861, 2024 Oct 20.
Article em En | MEDLINE | ID: mdl-39029752
ABSTRACT
Engineered nanomaterials (ENMs) can alter surface properties of cells and disturb cellular functions and gene expression through direct and indirect contact, exerting unintended impacts on human and ecological health. However, the effects of interactions among environmental factors, such as light, surrounding media, and ENM mixtures, on the mechanisms of ENM toxicity, especially at sublethal concentrations, are much less explored and understood. Therefore, we evaluated cell viability and outer membrane permeability of E. coli as a function of exposure to environmentally relevant concentrations of ENMs, including metal (n-Ag) and metal oxide (n-TiO2, n-Al2O3, n-ZnO, n-CuO, and n-SiO2) nanoparticles under dark and simulated sunlight illumination in MOPS, a synthetic buffer, and Lake Michigan Water (LMW), a freshwater medium. We found that light activates the phototoxicity of n-TiO2 and n-Ag by inducing significant increases in bacterial outer membrane permeability at sublethal doses (< 1 mg/L). Other ENMs, including n-ZnO, n-CuO, n-Al2O3, and n-SiO2, have small to minimal impacts. Toxicities of ENMs were greater in LMW than MOPS due to their different ionic strength and chemical composition. Physical and chemical interactions between n-TiO2 and n-Ag lead to amplified toxic effects of the ENM mixtures that are greater than the additive effects of individual ENMs acting alone. Our results revealed the significant sublethal bacterial stress exerted by ENMs and ENM mixtures at the cell surface in natural environments at low doses, which can potentially lead to further cellular damage and eventually impact overall ecological health.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article