Your browser doesn't support javascript.
loading
Transcription factor TaNF-YB2 interacts with partners TaNF-YA7/YC7 and transcriptionally activates distinct stress-defensive genes to modulate drought tolerance in T. Aestivum.
Zhao, Ying-Jia; Ma, Chun-Ying; Zheng, Meng-Jing; Yao, Yan-Rong; Lv, Li-Hua; Zhang, Li-Hua; Fu, Xiao-Xin; Zhang, Jing-Ting; Xiao, Kai.
Afiliação
  • Zhao YJ; Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China.
  • Ma CY; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, P.R. China.
  • Zheng MJ; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, P.R. China.
  • Yao YR; College of Agronomy, Hebei Agricultural University, Baoding, 071001, P.R. China.
  • Lv LH; Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China.
  • Zhang LH; Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China.
  • Fu XX; Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China.
  • Zhang JT; Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China.
  • Xiao K; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, P.R. China.
BMC Plant Biol ; 24(1): 705, 2024 Jul 25.
Article em En | MEDLINE | ID: mdl-39054416
ABSTRACT

BACKGROUND:

Drought stress limits significantly the crop productivity. However, plants have evolved various strategies to cope with the drought conditions by adopting complex molecular, biochemical, and physiological mechanisms. Members of the nuclear factor Y (NF-Y) transcription factor (TF) family constitute one of the largest TF classes and are involved in plant responses to abiotic stresses.

RESULTS:

TaNF-YB2, a NY-YB subfamily gene in T. aestivum, was characterized in this study focusing on its role in mediating plant adaptation to drought stress. Yeast two-hybrid (Y-2 H), biomolecular fluoresence complementation (BiFC), and Co-immunoprecipitation (Co-IP) assays indicated that TaNF-YB2 interacts with the NF-YA member TaNF-YA7 and NF-YC family member TaNF-YC7, which constitutes a heterotrimer TaNF-YB2/TaNF-YA7/TaNF-YC7. The TaNF-YB2 transcripts are induced in roots and aerial tissues upon drought signaling; GUS histochemical staining analysis demonstrated the roles of cis-regulatory elements ABRE and MYB situated in TaNF-YB2 promoter to contribute to target gene response to drought. Transgene analysis on TaNF-YB2 confirmed its functions in regulating drought adaptation via modulating stomata movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis. TaNF-YB2 possessed the abilities in transcriptionally activating TaP5CS2, the P5CS family gene involving proline biosynthesis and TaSOD1, TaCAT5, and TaPOD5, the genes encoding antioxidant enzymes. Positive correlations were found between yield and the TaNF-YB2 transcripts in a core panel constituting 45 wheat cultivars under drought condition, in which two types of major haplotypes including TaNF-YB2-Hap1 and -Hap2 were included, with the former conferring more TaNF-YB2 transcripts and stronger plant drought tolerance.

CONCLUSIONS:

TaNF-YB2 is transcriptional response to drought stress. It is an essential regulator in mediating plant drought adaptation by modulating the physiological processes associated with stomatal movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis, depending on its role in transcriptionally regulating stress response genes. Our research deepens the understanding of plant drought stress underlying NF-Y TF family and provides gene resource in efforts for molecular breeding the drought-tolerant cultivars in T. aestivum.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article