Your browser doesn't support javascript.
loading
A Novel Truncated CHAP Modular Endolysin, CHAPSAP26-161, That Lyses Staphylococcus aureus, Acinetobacter baumannii, and Clostridioides difficile, and Exhibits Therapeutic Effects in a Mouse Model of A. baumannii Infection.
Choi, Yoon-Jung; Kim, Shukho; Dahal, Ram Hari; Kim, Jungmin.
Afiliação
  • Choi YJ; Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
  • Kim S; Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
  • Dahal RH; Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
  • Kim J; Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
J Microbiol Biotechnol ; 34(8): 1718-1726, 2024 Aug 28.
Article em En | MEDLINE | ID: mdl-39081246
ABSTRACT
Development of novel antibacterial agents is imperative due to the increasing threat of antibiotic-resistant pathogens. This study aimed to develop the enhanced antibacterial activity and in-vivo efficacy of a novel truncated endolysin, CHAPSAP26-161, derived from the endolysin LysSAP26, against multidrug-resistant bacteria. CHAPSAP26-161 exhibited higher protein purification efficiency in E. coli and antibacterial activity than LysSAP26. Moreover, CHAPSAP26-161 showed the higher lytic activity against A. baumannii with minimal bactericidal concentrations (MBCs) of 5-10 µg/ml, followed by Staphylococcus aureus with MBCs of 10-25 µg/ml. Interestingly, CHAPSAP26-161 could lyse anaerobic bacteria, such as Clostridioides difficile, with MBCs of 25-50 µg/ml. At pH 4-8 and temperatures of 4°C-45°C, CHAPSAP26-161 maintained antibacterial activity without remarkable difference. The lytic activity of CHAPSAP26-161 was increased with Zn2+. In vivo tests demonstrated the therapeutic effects of CHAPSAP26-161 in murine systemic A. baumannii infection model. In conclusion, CHAPSAP26-161, a truncated endolysin that retains only the CHAP domain from LysSAP26, demonstrated enhanced protein purification efficiency and antibacterial activity compared to LysSAP26. It further displayed broad-spectrum antibacterial effects against S. aureus, A. baumannii, and C. difficile. Our in vitro and in-vivo results of CHAPSAP26-161 highlights its promise as an innovative therapeutic option against those bacteria with multiple antibiotic resistance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article