Your browser doesn't support javascript.
loading
Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat.
Takakusaki, K; Kitai, S T.
Afiliação
  • Takakusaki K; Department of Anatomy and Neurobiology, The University of Tennessee, College of Medicine, Memphis 38163, USA.
Neuroscience ; 78(3): 771-94, 1997 Jun.
Article em En | MEDLINE | ID: mdl-9153657
ABSTRACT
We have previously defined three types of tegmental pedunculopontine nuclei neurons based on their electrophysiological characteristics Type I neurons characterized by low-threshold Ca2+ spikes, Type II neurons which displayed a transient outward current (A-current), and Type III neurons having neither low-threshold spikes nor A-current [Kang Y. and Kitai S. T. (1990) Brain Res. 535, 79-95]. In this report, ionic mechanisms underlying repetitive firing of Type I (n=15) and Type II (n=69) neurons were studied in in vitro slice preparations. Type I neurons did not fire rhythmically but their spontaneous firing frequency ranged from 0 to 19.5 spikes/s (mean 9.7 spikes/s). The spontaneous firing of Type II neurons was rhythmic, with a mean frequency of 9.6 spikes/s (range 3.5-16.0 spikes/s). Choline acetyltransferase immunohistochemistry combined with biocytin labeling indicated that none of the Type I neurons were immunopositive to choline acetyltransferase, while 60% (42 of 69) of Type II neurons were immunopositive. There was no apparent difference in the electrophysiological membrane properties of immunopositive and immunonegative Type II neurons. At membrane potentials subthreshold for Na+ spikes (-50 mV), spontaneous membrane oscillations (11.6 Hz) were observed these underlie the spontaneous repetitive firing of Type I neurons. The subthreshold membrane oscillation was tetrodotoxin sensitive but was not affected by Ca2+-free medium. A similar tetrodotoxin-sensitive subthreshold membrane oscillation (10.5 Hz) was also observed in Type II neurons. However, in Type II neurons a membrane oscillation was also observed at higher membrane potentials (-50 mV). This high-threshold oscillation was insensitive to tetrodotoxin and Na+-free medium, but was eliminated in Ca2+-free conditions. The amplitude and frequency of the high-threshold oscillation was increased upon membrane depolarization. At the most prominent oscillatory level (around -40 mV), the high-threshold oscillation had a mean frequency of 8.8 Hz. The high-threshold Ca2+ spike was triggered from the peak potential (-35 to -30mV) of the high-threshold oscillation. Application of tetraethylammonium chloride (< 5 mM) increased the amplitude of the high-threshold oscillation, while nifedipine greatly attenuated the high-threshold oscillation without changing the shape of the high-threshold Ca2+ spike. Application of Cd2+ eliminated both the high-threshold oscillation and the high-threshold Ca2+ spike, and omega-conotoxin reduced the size of the high-threshold Ca2+ spike without affecting the frequency of the high-threshold oscillation. Nickel did not have any effect on either the high-threshold oscillation or the high-threshold Ca2+ spike. These data suggest an involvement of N- and L-type Ca2+ channels in the generation of the high-threshold oscillation and the high-threshold Ca2+ spike, respectively. The results indicate that a persistent Na+ conductance plays a crucial role in the subthreshold membrane oscillation, which underlies spontaneous repetitive firing in Type I neurons. On the other hand, in addition to a persistent Na+ conductance for subthreshold membrane oscillation, a voltage-dependent Ca2+ conductance with Ca2+-dependent K+ conductance (for the high-threshold oscillation) may be responsible for rhythmic firing of Type II neurons.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 1997 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 1997 Tipo de documento: Article