Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
bioRxiv ; 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36824895

RESUMEN

In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drives vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes. Significance Statement: In the adult brain, increases in neural activity are often followed by vasodilation, allowing activity to be monitored using optical or magnetic resonance imaging. However, in neonates, sensory stimulation can drive vasoconstriction, whose origin was not understood. We used optical and magnetic resonance imaging approaches to investigate hemodynamics in neonatal mice. We found that sensory-induced vasoconstriction occurred when the mice were asleep, as sleep is associated with dilation of the vasculature of the brain relative to the awake state. The stimulus awakens the mice, causing a constriction due to the arousal state change. Our study shows the importance of monitoring arousal state, particularly when investigating subjects that may sleep, and the dominance arousal effects on brain hemodynamics.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda