Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Comput Biol ; 8(8): e1002639, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927804

RESUMEN

Predicting which mutations proteins tolerate while maintaining their structure and function has important applications for modeling fundamental properties of proteins and their evolution; it also drives progress in protein design. Here we develop a computational model to predict the tolerated sequence space of HIV-1 protease reachable by single mutations. We assess the model by comparison to the observed variability in more than 50,000 HIV-1 protease sequences, one of the most comprehensive datasets on tolerated sequence space. We then extend the model to a second protein, reverse transcriptase. The model integrates multiple structural and functional constraints acting on a protein and uses ensembles of protein conformations. We find the model correctly captures a considerable fraction of protease and reverse-transcriptase mutational tolerance and shows comparable accuracy using either experimentally determined or computationally generated structural ensembles. Predictions of tolerated sequence space afforded by the model provide insights into stability-function tradeoffs in the emergence of resistance mutations and into strengths and limitations of the computational model.


Asunto(s)
Proteasa del VIH/genética , Transcriptasa Inversa del VIH/genética , Mutación , Proteasa del VIH/química , Transcriptasa Inversa del VIH/química , Modelos Moleculares , Conformación Proteica
2.
Nat Commun ; 12(1): 6947, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845212

RESUMEN

Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework, and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.


Asunto(s)
Sustancias Macromoleculares/química , Simulación del Acoplamiento Molecular , Proteínas/química , Programas Informáticos/normas , Benchmarking , Sitios de Unión , Humanos , Ligandos , Sustancias Macromoleculares/metabolismo , Unión Proteica , Proteínas/metabolismo , Reproducibilidad de los Resultados
3.
J Phys Chem B ; 122(21): 5389-5399, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29401388

RESUMEN

Computationally modeling changes in binding free energies upon mutation (interface ΔΔ G) allows large-scale prediction and perturbation of protein-protein interactions. Additionally, methods that consider and sample relevant conformational plasticity should be able to achieve higher prediction accuracy over methods that do not. To test this hypothesis, we developed a method within the Rosetta macromolecular modeling suite (flex ddG) that samples conformational diversity using "backrub" to generate an ensemble of models and then applies torsion minimization, side chain repacking, and averaging across this ensemble to estimate interface ΔΔ G values. We tested our method on a curated benchmark set of 1240 mutants, and found the method outperformed existing methods that sampled conformational space to a lesser degree. We observed considerable improvements with flex ddG over existing methods on the subset of small side chain to large side chain mutations, as well as for multiple simultaneous non-alanine mutations, stabilizing mutations, and mutations in antibody-antigen interfaces. Finally, we applied a generalized additive model (GAM) approach to the Rosetta energy function; the resulting nonlinear reweighting model improved the agreement with experimentally determined interface ΔΔ G values but also highlighted the necessity of future energy function improvements.


Asunto(s)
Modelos Moleculares , Proteínas/química , Complejo Antígeno-Anticuerpo , Entropía , Método de Montecarlo , Mutagénesis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo , Electricidad Estática
4.
PLoS One ; 10(9): e0130433, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26335248

RESUMEN

The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.


Asunto(s)
Benchmarking , Conjuntos de Datos como Asunto , Internet , Modelos Moleculares , Proteínas/química , Aminoácidos/química , Evolución Química , Mutación , Proteínas/genética , Termodinámica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda