Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 18(2): e1010266, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35134097

RESUMEN

Inhibition of host cell apoptosis is crucial for survival and replication of several intracellular bacterial pathogens. To interfere with apoptotic pathways, some pathogens use specialized secretion systems to inject bacterial effector proteins into the host cell cytosol. One of these pathogens is the obligate intracellular bacterium Coxiella burnetii, the etiological agent of the zoonotic disease Q fever. In this study, we analyzed the molecular activity of the anti-apoptotic T4SS effector protein AnkG (CBU0781) to understand how C. burnetii manipulates host cell viability. We demonstrate by co- and RNA-immunoprecipitation that AnkG binds to the host cell DExD box RNA helicase 21 (DDX21) as well as to the host cell 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, an important regulator of the positive transcription elongation factor b (P-TEFb). The co-immunoprecipitation of AnkG with DDX21 is probably mediated by salt bridges and is independent of AnkG-7SK snRNP binding, and vice versa. It is known that DDX21 facilitates the release of P-TEFb from the 7SK snRNP complex. Consistent with the documented function of released P-TEFb in RNA Pol II pause release, RNA sequencing experiments confirmed AnkG-mediated transcriptional reprogramming and showed that expression of genes involved in apoptosis, trafficking, and transcription are influenced by AnkG. Importantly, DDX21 and P-TEFb are both essential for AnkG-mediated inhibition of host cell apoptosis, emphasizing the significance of the interaction of AnkG with both, the DDX21 protein and the 7SK RNA. In line with a critical function of AnkG in pathogenesis, the AnkG deletion C. burnetii strain was severely affected in its ability to inhibit host cell apoptosis and to generate a replicative C. burnetii-containing vacuole. In conclusion, the interference with the activity of regulatory host cell RNAs mediated by a bacterial effector protein represent a novel mechanism through which C. burnetii modulates host cell transcription, thereby enhancing permissiveness to bacterial infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coxiella burnetii/metabolismo , ARN Helicasas DEAD-box/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Fiebre Q/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Apoptosis , Supervivencia Celular , Coxiella burnetii/genética , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Mutación , Fiebre Q/microbiología , Células THP-1
2.
Cell Microbiol ; 18(2): 181-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26249821

RESUMEN

The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal-like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii-containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP-1 and LAMP-2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP-1/2 double-deficient fibroblasts as well as in LAMP-1/2 knock-down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double-deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP-1 or LAMP-2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead-containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii.


Asunto(s)
Coxiella burnetii/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Proteínas de Membrana de los Lisosomas/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología , Animales , Células CHO , Cricetulus , Endosomas/metabolismo , Fibroblastos/microbiología , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/metabolismo , Fusión de Membrana , Fagosomas/metabolismo
3.
J Am Soc Nephrol ; 24(6): 906-16, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23539760

RESUMEN

Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC-antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection.


Asunto(s)
Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Barrera de Filtración Glomerular/inmunología , Podocitos/citología , Podocitos/inmunología , Inmunidad Adaptativa/inmunología , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Comunicación Celular/inmunología , Femenino , Membrana Basal Glomerular/citología , Membrana Basal Glomerular/inmunología , Membrana Basal Glomerular/metabolismo , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Inmunoglobulina G/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Microesferas , Ovalbúmina/inmunología , Ovalbúmina/farmacocinética , Fagocitosis/inmunología , Podocitos/metabolismo
4.
Front Immunol ; 15: 1427457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156902

RESUMEN

Aconitate decarboxylase-1 (ACOD1) is expressed by activated macrophages and generates itaconate that exerts anti-microbial and immunoregulatory effects. ACOD1-itaconate is essential for macrophage-mediated control of the intracellular pathogen Coxiella (C.) burnetii, which causes Q fever. Two isomers of itaconate, mesaconate and citraconate, have overlapping yet distinct activity on macrophage metabolism and inflammatory gene expression. Here, we found that all three isomers inhibited the growth of C. burnetii in axenic culture in ACCM-2 medium. However, only itaconate reduced C. burnetii replication efficiently in Acod1-/- macrophages. In contrast, addition of citraconate strongly increased C. burnetii replication in Acod1+/- macrophages, whereas mesaconate weakly enhanced bacterial burden in Acod1-/- macrophages. Analysis of intracellular isomers showed that exogenous citraconate and mesaconate inhibited the generation of itaconate by infected Acod1+/- macrophages. Uptake of added isomers into Acod1-/- macrophages was increased after infection for itaconate and mesaconate, but not for citraconate. Mesaconate, but not citraconate, competed with itaconate for uptake into macrophages. Taken together, inhibition of itaconate generation by macrophages and interference with the uptake of extracellular itaconate could be identified as potential mechanisms behind the divergent effects of citraconate and mesaconate on C. burnetii replication in macrophages or in axenic culture.


Asunto(s)
Cultivo Axénico , Carboxiliasas , Coxiella burnetii , Macrófagos , Succinatos , Coxiella burnetii/efectos de los fármacos , Coxiella burnetii/crecimiento & desarrollo , Succinatos/farmacología , Animales , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Carboxiliasas/metabolismo , Ratones Noqueados , Fiebre Q/inmunología , Fiebre Q/microbiología , Ratones Endogámicos C57BL , Hidroliasas
5.
Front Immunol ; 14: 960927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793725

RESUMEN

Background: Coxiella burnetii is a zoonotic pathogen, infecting humans, livestock, pets, birds and ticks. Domestic ruminants such as cattle, sheep, and goats are the main reservoir and major cause of human infection. Infected ruminants are usually asymptomatic, while in humans infection can cause significant disease. Human and bovine macrophages differ in their permissiveness for C. burnetii strains from different host species and of various genotypes and their subsequent host cell response, but the underlying mechanism(s) at the cellular level are unknown. Methods: C. burnetii infected primary human and bovine macrophages under normoxic and hypoxic conditions were analyzed for (i) bacterial replication by CFU counts and immunofluorescence; (ii) immune regulators by westernblot and qRT-PCR; cytokines by ELISA; and metabolites by gas chromatography-mass spectrometry (GC-MS). Results: Here, we confirmed that peripheral blood-derived human macrophages prevent C. burnetii replication under oxygen-limiting conditions. In contrast, oxygen content had no influence on C. burnetii replication in bovine peripheral blood-derived macrophages. In hypoxic infected bovine macrophages, STAT3 is activated, even though HIF1α is stabilized, which otherwise prevents STAT3 activation in human macrophages. In addition, the TNFα mRNA level is higher in hypoxic than normoxic human macrophages, which correlates with increased secretion of TNFα and control of C. burnetii replication. In contrast, oxygen limitation does not impact TNFα mRNA levels in C. burnetii-infected bovine macrophages and secretion of TNFα is blocked. As TNFα is also involved in the control of C. burnetii replication in bovine macrophages, this cytokine is important for cell autonomous control and its absence is partially responsible for the ability of C. burnetii to replicate in hypoxic bovine macrophages. Further unveiling the molecular basis of macrophage-mediated control of C. burnetii replication might be the first step towards the development of host directed intervention measures to mitigate the health burden of this zoonotic agent.


Asunto(s)
Coxiella burnetii , Fiebre Q , Animales , Bovinos , Citocinas/metabolismo , Hipoxia/metabolismo , Macrófagos , Oxígeno/metabolismo , Rumiantes , Factor de Necrosis Tumoral alfa/metabolismo
6.
EMBO Mol Med ; 15(2): e15931, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36479617

RESUMEN

Infection with the intracellular bacterium Coxiella (C.) burnetii can cause chronic Q fever with severe complications and limited treatment options. Here, we identify the enzyme cis-aconitate decarboxylase 1 (ACOD1 or IRG1) and its product itaconate as protective host immune pathway in Q fever. Infection of mice with C. burnetii induced expression of several anti-microbial candidate genes, including Acod1. In macrophages, Acod1 was essential for restricting C. burnetii replication, while other antimicrobial pathways were dispensable. Intratracheal or intraperitoneal infection of Acod1-/- mice caused increased C. burnetii burden, weight loss and stronger inflammatory gene expression. Exogenously added itaconate restored pathogen control in Acod1-/- mouse macrophages and blocked replication in human macrophages. In axenic cultures, itaconate directly inhibited growth of C. burnetii. Finally, treatment of infected Acod1-/- mice with itaconate efficiently reduced the tissue pathogen load. Thus, ACOD1-derived itaconate is a key factor in the macrophage-mediated defense against C. burnetii and may be exploited for novel therapeutic approaches in chronic Q fever.


Asunto(s)
Coxiella burnetii , Fiebre Q , Animales , Humanos , Ratones , Coxiella burnetii/genética , Macrófagos , Fiebre Q/genética , Fiebre Q/microbiología
7.
Front Cell Infect Microbiol ; 10: 559915, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282747

RESUMEN

Coxiella burnetii is an obligate intracellular pathogen and the causative agent of the zoonotic disease Q fever. Following uptake by alveolar macrophages, the pathogen replicates in an acidic phagolysosomal vacuole, the C. burnetii-containing vacuole (CCV). Effector proteins translocated into the host cell by the type IV secretion system (T4SS) are important for the establishment of the CCV. Here we focus on the effector protein AnkF and its role in establishing the CCV. The C. burnetii AnkF knock out mutant invades host cells as efficiently as wild-type C. burnetii, but this mutant is hampered in its ability to replicate intracellularly, indicating that AnkF might be involved in the development of a replicative CCV. To unravel the underlying reason(s), we searched for AnkF interactors in host cells and identified vimentin through a yeast two-hybrid approach. While AnkF does not alter vimentin expression at the mRNA or protein levels, the presence of AnkF results in structural reorganization and vesicular co-localization with recombinant vimentin. Ectopically expressed AnkF partially accumulates around the established CCV and endogenous vimentin is recruited to the CCV in a time-dependent manner, suggesting that AnkF might attract vimentin to the CCV. However, knocking-down endogenous vimentin does not affect intracellular replication of C. burnetii. Other cytoskeletal components are recruited to the CCV and might compensate for the lack of vimentin. Taken together, AnkF is essential for the establishment of the replicative CCV, however, its mode of action is still elusive.


Asunto(s)
Coxiella burnetii , Fiebre Q , Proteínas Bacterianas/genética , Interacciones Huésped-Patógeno , Humanos , Sistemas de Secreción Tipo IV/genética , Vacuolas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda