Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Magn Reson Med ; 80(5): 2246-2255, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29607551

RESUMEN

PURPOSE: To study the role of temperature in biological systems, diagnostic contrasts and thermal therapies, RF pulses for MR spin excitation can be deliberately used to apply a thermal stimulus. This application requires dedicated transmit/receive (Tx/Rx) switches that support high peak powers for MRI and high average powers for RF heating. To meet this goal, we propose a high-performance Tx/Rx switch based on positive-intrinsic-negative diodes and quarter-wavelength (λ/4) stubs. METHODS: The λ/4 stubs in the proposed Tx/Rx switch design route the transmitted RF signal directly to the RF coil/antenna without passing through any electronic components (e.g., positive-intrinsic-negative diodes). Bench measurements, MRI, MR thermometry, and RF heating experiments were performed at f = 297 MHz (B0 = 7 T) to examine the characteristics and applicability of the switch. RESULTS: The proposed design provided an isolation of -35.7dB/-41.5dB during transmission/reception. The insertion loss was -0.41dB/-0.27dB during transmission/reception. The switch supports high peak (3.9 kW) and high average (120 W) RF powers for MRI and RF heating at f = 297 MHz. High-resolution MRI of the wrist yielded image quality competitive with that obtained with a conventional Tx/Rx switch. Radiofrequency heating in phantom monitored by MR thermometry demonstrated the switch applicability for thermal modulation. Upon these findings, thermally activated release of a model drug attached to thermoresponsive polymers was demonstrated. CONCLUSION: The high-power Tx/Rx switch enables thermal MR applications at 7 T, contributing to the study of the role of temperature in biological systems and diseases. All design files of the switch will be made available open source at www.opensourceimaging.org.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Termometría/instrumentación , Diseño de Equipo , Calor , Humanos , Fantasmas de Imagen , Ondas de Radio , Relación Señal-Ruido , Muñeca/diagnóstico por imagen
2.
Magn Reson Med ; 74(4): 999-1010, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25293952

RESUMEN

PURPOSE: Examine radiofrequency (RF) induced heating of coronary stents at 7.0 Tesla (T) to derive an analytical approach which supports RF heating assessment of arbitrary stent geometries and RF coils. METHODS: Simulations are performed to detail electromagnetic fields (EMF), local specific absorption rates (SAR) and temperature changes. For validation E-field measurements and RF heating experiments are conducted. To progress to clinical setups RF coils tailored for cardiac MRI at 7.0T and coronary stents are incorporated into EMF simulations using a human voxel model. RESULTS: Our simulations of coronary stents at 297 MHz were confirmed by E-field and temperature measurements. An analytical solution which describes SAR(1g tissue voxel) induced by an arbitrary coronary stent interfering with E-fields generated by an arbitrary RF coil was derived. The analytical approach yielded a conservative estimation of induced SAR(1g tissue voxel) maxima without the need for integrating the stent into EMF simulations of the human voxel model. CONCLUSION: The proposed analytical approach can be applied for any patient, coronary stent type, RF coil configuration and RF transmission regime. The generalized approach is of value for RF heating assessment of other passive electrically conductive implants and provides a novel design criterion for RF coils.


Asunto(s)
Calor , Imagen por Resonancia Magnética/efectos adversos , Modelos Teóricos , Stents , Campos Electromagnéticos , Humanos , Fantasmas de Imagen , Ondas de Radio , Termometría
3.
J Magn Reson Imaging ; 36(2): 364-72, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22411274

RESUMEN

PURPOSE: To investigate the feasibility of using magnetohydrodynamic (MHD) effects for synchronization of magnetic resonance imaging (MRI) with the cardiac cycle. MATERIALS AND METHODS: The MHD effect was scrutinized using a pulsatile flow phantom at B(0) = 7.0 T. MHD effects were examined in vivo in healthy volunteers (n = 10) for B(0) ranging from 0.05-7.0 T. Noncontrast-enhanced MR angiography (MRA) of the carotids was performed using a gated steady-state free-precession (SSFP) imaging technique in conjunction with electrocardiogram (ECG) and MHD synchronization. RESULTS: The MHD potential correlates with flow velocities derived from phase contrast MRI. MHD voltages depend on the orientation between B(0) and the flow of a conductive fluid. An increase in the interelectrode spacing along the flow increases the MHD potential. In vivo measurement of the MHD effect provides peak voltages of 1.5 mV for surface areas close to the common carotid artery at B(0) = 7.0 T. Synchronization of MRI with the cardiac cycle using MHD triggering is feasible. MHD triggered MRA of the carotids at 3.0 T showed an overall image quality and richness of anatomic detail, which is comparable to ECG-triggered MRAs. CONCLUSION: This feasibility study demonstrates the use of MHD effects for synchronization of MR acquisitions with the cardiac cycle.


Asunto(s)
Técnicas de Imagen Sincronizada Cardíacas/métodos , Electrocardiografía/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Cinemagnética/métodos , Magnetocardiografía/métodos , Estudios de Factibilidad , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
4.
Eur Radiol ; 21(10): 2187-92, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21647823

RESUMEN

OBJECTIVE: The purpose of this study is to (i) design a small and mobile Magnetic field ALert SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments. METHODS: MALSE comprises a set of reed sensors, which activate in response to their exposure to a magnetic field. The activation/deactivation of reed sensors was examined by moving them in/out of the fringe field generated by 7TMR. RESULTS: The consistency with which individual reed sensors would activate at the same field strength was found to be 100% for the setup used. All of the reed switches investigated required a substantial drop in ambient magnetic field strength before they deactivated. CONCLUSIONS: MALSE is a simple concept for alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus creating a barrier for hazardous situations induced by ferromagnetic parts which should not enter the vicinity of an MR-system to occur.


Asunto(s)
Campos Electromagnéticos , Imagen por Resonancia Magnética/métodos , Diseño de Equipo , Humanos , Campos Magnéticos , Magnetismo/instrumentación , Salud Laboral , Seguridad del Paciente
5.
PLoS One ; 8(4): e61661, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23613896

RESUMEN

This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm(3) iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.


Asunto(s)
Campos Electromagnéticos , Hipertermia Inducida/instrumentación , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Ondas de Radio , Diseño de Equipo , Estudios de Factibilidad , Humanos
6.
PLoS One ; 7(11): e49963, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185498

RESUMEN

The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.


Asunto(s)
Espectroscopía de Resonancia Magnética , Ondas de Radio , Stents , Enfermedad Coronaria/terapia , Campos Electromagnéticos , Tecnología de Fibra Óptica , Calefacción , Humanos , Dispositivo de Identificación por Radiofrecuencia , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda