Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Genet ; 8(3): e1002590, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438835

RESUMEN

Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms.


Asunto(s)
División Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Ribosomas , Saccharomyces cerevisiae , Proliferación Celular , Tamaño de la Célula , ADN/análisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Homocigoto , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
2.
BMC Microbiol ; 11: 148, 2011 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-21702985

RESUMEN

BACKGROUND: Cronobacter spp. is a newly emerging pathogen that causes meningitis in infants and other diseases in elderly and immunocompromised individuals. This study was undertaken to investigate surface antigenic determinants in Cronobacter spp. using monoclonal antibodies (MAbs) and MALDI-TOF Mass spectrometry. RESULTS: Spleenocytes from mice that were immunized with heat-killed (20 min, 80°C) Cronobacter cells were fused with SP2 myeloma cells. Five desirable MAbs (A1, B5, 2C2, C5 and A4) were selected. MAbs A1, B5, 2C2 and C5 were of IgG2a isotype while A4 was an IgM. Specificity of the MAbs was determined by using immunoblotting with outer membrane protein preparations (OMPs) extracted from 12 Cronobacter and 6 non-Cronobacter bacteria. All MAbs recognized proteins with molecular weight ranging between 36 and 49 kDa except for one isolate (44) in which no OMPs were detected. In addition, MAbs recognized two bands (38-41 kDa) in four of the non-Cronobacter bacteria. Most of the proteins recognized by the MAbs were identified by MALDI-TOF peptide sequencing and appeared to be heterogeneous with the identities of some of them are still unknown. All MAbs recognized the same epitope as determined by an additive Index ELISA with their epitopes appeared to be conformational rather than sequential. Further, none of the MAbs recognized purified LPS from Cronobacter spp. Specificity of the MAbs toward OMPs was further confirmed by transmission electron microscopy. CONCLUSIONS: Results obtained in this study highlight the immunological cross-reactivity among Cronobacter OMPs and their Enterobacteriaceae counterparts. Nevertheless, the identity of the identified proteins appeared to be different as inferred from the MALDI-TOF sequencing and identification.


Asunto(s)
Antígenos Bacterianos/análisis , Proteínas de la Membrana Bacteriana Externa/análisis , Proteínas Bacterianas/análisis , Enterobacteriaceae/química , Proteínas de la Membrana/análisis , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Antígenos Bacterianos/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Enterobacteriaceae/aislamiento & purificación , Proteínas de la Membrana/química , Ratones , Peso Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
BMC Microbiol ; 9: 225, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19860874

RESUMEN

BACKGROUND: Cronobacter spp. (formerly Enterobacter sakazakii), are a group of Gram-negative pathogens that have been implicated as causative agents of meningitis and necrotizing enterocolitis in infants. The pathogens are linked to infant formula; however, they have also been isolated from a wide range of foods and environmental samples. RESULTS: In this study, 233 samples of food, infant formula and environment were screened for the presence of Cronobacter spp. in an attempt to find its source. Twenty nine strains were isolated from samples of spices, herbs, infant foods, and dust obtained from household vacuum cleaners. Among the 76 samples of infant food, infant formula, milk powder and non-milk dairy products tested, only one sample of infant food contained Cronobacter spp. (1.4%). The other Cronobacter spp. isolates recovered include two from household vacuum dust, and 26 from 67 samples of herbs and spices. Among the food categories analyzed, herbs and spices harbored the highest number of isolates, indicating plants as a possible reservoir of this pathogen. Initial screening with API 20E test strips yielded 42 presumptive isolates. Further characterization using 3 chromogenic media (alpha-MUG, DFI and EsPM) and 8 sets of PCR primers detecting ITS (internal transcribed spacer sequences), 16S rRNA, zpx, gluA, gluB, OmpA genes followed by nucleotide sequencing of some PCR amplicons did not confirm the identity of all the isolates as none of the methods proved to be free of both false positives or false negatives. The final confirmation step was done by 16S rRNA sequence analysis identifying only 29 of the 42 isolates as Cronobacter spp. CONCLUSION: Our studies showed that Cronobacter spp. are highly diverse and share many phenotypic traits with other Enterobacteriaceae members highlighting the need to use several methods to confirm the identity of this pathogen. None of the biochemical, chromogenic or PCR primers proved to be a reliable method for confirmation of the identity of the isolates as all of them gave either false positives or false negatives or both. It is therefore concluded that 16S rRNA sequencing is pivotal to confirm the identity of the isolates.


Asunto(s)
Cronobacter sakazakii/aislamiento & purificación , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Alimentos Infantiles/microbiología , Compuestos Cromogénicos , Cronobacter sakazakii/clasificación , Cronobacter sakazakii/genética , ADN Bacteriano/genética , Productos Lácteos/análisis , Productos Lácteos/microbiología , Polvo/análisis , Humanos , Lactante , Alimentos Infantiles/análisis , Fórmulas Infantiles , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/análisis , Especias/análisis , Especias/microbiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda