RESUMEN
The biological basis of the commonality in color lexicons across languages has been hotly debated for decades. Prior evidence that infants categorize color could provide support for the hypothesis that color categorization systems are not purely constructed by communication and culture. Here, we investigate the relationship between infants' categorization of color and the commonality across color lexicons, and the potential biological origin of infant color categories. We systematically mapped infants' categorical recognition memory for hue onto a stimulus array used previously to document the color lexicons of 110 nonindustrialized languages. Following familiarization to a given hue, infants' response to a novel hue indicated that their recognition memory parses the hue continuum into red, yellow, green, blue, and purple categories. Infants' categorical distinctions aligned with common distinctions in color lexicons and are organized around hues that are commonly central to lexical categories across languages. The boundaries between infants' categorical distinctions also aligned, relative to the adaptation point, with the cardinal axes that describe the early stages of color representation in retinogeniculate pathways, indicating that infant color categorization may be partly organized by biological mechanisms of color vision. The findings suggest that color categorization in language and thought is partially biologically constrained and have implications for broader debate on how biology, culture, and communication interact in human cognition.
Asunto(s)
Percepción de Color/fisiología , Visión de Colores/fisiología , Femenino , Humanos , Lactante , MasculinoRESUMEN
Focal colors, or best examples of color terms, have traditionally been viewed as either the underlying source of cross-language color-naming universals or derived from category boundaries that vary widely across languages. Existing data partially support and partially challenge each of these views. Here, we advance a position that synthesizes aspects of these two traditionally opposed positions and accounts for existing data. We do so by linking this debate to more general principles. We show that best examples of named color categories across 112 languages are well-predicted from category extensions by a statistical model of how representative a sample is of a distribution, independently shown to account for patterns of human inference. This model accounts for both universal tendencies and variation in focal colors across languages. We conclude that categorization in the contested semantic domain of color may be governed by principles that apply more broadly in cognition and that these principles clarify the interplay of universal and language-specific forces in color naming.
Asunto(s)
Percepción de Color , Lenguaje , Color , Humanos , Estimulación Luminosa , Encuestas y CuestionariosRESUMEN
The explosion of data generated during human interactions online presents an opportunity for psychologists to evaluate cognitive models outside the confines of the laboratory. Moreover, the size of these online data sets can allow researchers to construct far richer models than would be feasible with smaller in-lab behavioral data. In the current article, we illustrate this potential by evaluating 3 popular psychological models of generalization on 2 web-scale online data sets typically used to build automated recommendation systems. We show that each psychological model can be efficiently implemented at scale and in certain cases can capture trends in human judgments that standard recommendation systems from machine learning miss. We use these results to illustrate the opportunity Internet-scale data sets offer to psychologists and to underscore the importance of using insights from cognitive modeling to supplement the standard predictive-analytic approach taken by many existing machine learning approaches. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
RESUMEN
Decades of psychological research have been aimed at modeling how people learn features and categories. The empirical validation of these theories is often based on artificial stimuli with simple representations. Recently, deep neural networks have reached or surpassed human accuracy on tasks such as identifying objects in natural images. These networks learn representations of real-world stimuli that can potentially be leveraged to capture psychological representations. We find that state-of-the-art object classification networks provide surprisingly accurate predictions of human similarity judgments for natural images, but they fail to capture some of the structure represented by people. We show that a simple transformation that corrects these discrepancies can be obtained through convex optimization. We use the resulting representations to predict the difficulty of learning novel categories of natural images. Our results extend the scope of psychological experiments and computational modeling by enabling tractable use of large natural stimulus sets.
Asunto(s)
Aprendizaje , Modelos Neurológicos , Redes Neurales de la Computación , Humanos , Estimulación LuminosaRESUMEN
Most cognitive psychology experiments evaluate models of human cognition using a relatively small, well-controlled set of stimuli. This approach stands in contrast to current work in neuroscience, perception, and computer vision, which have begun to focus on using large databases of natural images. We argue that natural images provide a powerful tool for characterizing the statistical environment in which people operate, for better evaluating psychological theories, and for bringing the insights of cognitive science closer to real applications. We discuss how some of the challenges of using natural images as stimuli in experiments can be addressed through increased sample sizes, using representations from computer vision, and developing new experimental methods. Finally, we illustrate these points by summarizing recent work using large image databases to explore questions about human cognition in four different domains: modeling subjective randomness, defining a quantitative measure of representativeness, identifying prior knowledge used in word learning, and determining the structure of natural categories.
Asunto(s)
Cognición , Modelos Psicológicos , Algoritmos , Bases de Datos Factuales , Humanos , Procesamiento de Imagen Asistido por Computador , Solución de ProblemasRESUMEN
When people are asked to retrieve members of a category from memory, clusters of semantically related items tend to be retrieved together. A recent article by Hills, Jones, and Todd (2012) argued that this pattern reflects a process similar to optimal strategies for foraging for food in patchy spatial environments, with an individual making a strategic decision to switch away from a cluster of related information as it becomes depleted. We demonstrate that similar behavioral phenomena also emerge from a random walk on a semantic network derived from human word-association data. Random walks provide an alternative account of how people search their memories, postulating an undirected rather than a strategic search process. We show that results resembling optimal foraging are produced by random walks when related items are close together in the semantic network. These findings are reminiscent of arguments from the debate on mental imagery, showing how different processes can produce similar results when operating on different representations.