RESUMEN
Cell separation using microfluidics has become an effective method to isolate biological contaminants from bodily fluids and cell cultures, such as isolating bacteria contaminants from microalgae cultures and isolating bacteria contaminants from white blood cells. In this study, bacterial cells were used as a model contaminant in microalgae culture in a passive microfluidics device, which relies on hydrodynamic forces to demonstrate the separation of microalgae from bacteria contaminants in U and W-shaped cross-section spiral microchannel fabricated by defocusing CO2 laser ablation. At a flow rate of 0.7 ml/min in the presence of glycine as bacteria chemoattractant, the spiral microfluidics devices with U and W-shaped cross-sections were able to isolate microalgae (Desmodesmus sp.) from bacteria (E. coli) with a high separation efficiency of 92% and 96% respectively. At the same flow rate, in the absence of glycine, the separation efficiency of microalgae for U- and W-shaped cross-sections was 91% and 96%, respectively. It was found that the spiral microchannel device with a W-shaped cross-section with a barrier in the center of the channel showed significantly higher separation efficiency. Spiral microchannel chips with U- or W-shaped cross-sections were easy to fabricate and exhibited high throughput. With these advantages, these devices could be widely applicable to other cell separation applications, such as separating circulating tumor cells from blood.
RESUMEN
CO2 laser ablation is a rapid and precise technique for machining microfluidic devices. And also, low-cost epoxy resin (ER) proved the great feasibility of fabricating these devices using the CO2 laser ablation technique in our previous studies. However, such a technique has shown negative impacts on such ER-based microfluidics as rough surface microchannels, and thermal defects. Therefore, incorporating different proportions of boric acid (BA) into epoxy resin formulation was proposed to obviate the genesis of these drawbacks in ER-based microfluidics. The structural and optical properties of plain ER- and B-doped ER-based chips were characterized by Fourier transform infrared (FT-IR) and UV/Vis spectral analyses. Furthermore, their thermal properties were studied by thermo-gravimetric (TGA) and differential scanning calorimetric (DSC) analysis. A CO2 laser ablation machine was used in vector mode to draw the designed micro-channel pattern onto plain ER- and B-doped ER-based chips. The quality of microchannels engraved onto these chips was assessed using 3D laser microscopy. This microscopic examination showed a noticeable reduction in the surface roughness and negligible bulge heights in the laser-ablated micro-channels. On the other hand, overall and specific migration using gravimetric methods and gas chromatography-mass spectrometry (GC-MS), respectively, and PCR compatibility test were performed to explore the convenience of these micro-plates for the biological reactions. These findings validated the applicability of B-doped ER-based microfluidics in bio-analytical applications as a result of the effective role of boric acid in enhancing the thermal properties of these chips leading to get micro-channels with higher quality with no effect on the biological reactions.
RESUMEN
The formation of uniform droplets and the control of their size, shape and monodispersity are of utmost importance in droplet-based microfluidic systems. The size of the droplets is precisely tuned by the channel geometry, the surface interfacial tension, the shear force and fluid velocity. In addition, the fabrication technique and selection of materials are essential to reduce the fabrication cost and time. In this paper, for reducing the fabrication cost Polymethyl methacrylate (PMMA) sheet is used with direct write laser technique by VERSA CO2 laser VLS3.5. This laser writing technique gives minimum channel width of about 160 µ m , which limit miniaturizing the droplet. To overcome this, modification on double T-junction (DTJ) channel geometry has been done by modifying the channel inlets angles. First, a two-dimensional (2D) simulation has been done to study the effect of the new channel geometry modification on droplet size, droplets distribution inside the channel, and its throughput. The fabricated modified DTJ gives the minimum droplet diameter of 39 ± 2 µ m , while DTJ channel produced droplet diameter of 48 ± 4 µ m at the same conditions. Moreover, the modified double T-junction (MDTJ) decreases the variation in droplets diameter at the same flow rates by 4.5 - 13 % than DTJ. This low variation in the droplet diameter is suitable for repeatability of the DNA detection results. The MDTJ also enhanced the droplet generation frequency by 8 - 25 % more than the DTJ channel. The uniformity of droplet distribution inside the channel was enhanced by 3 - 20 % compared to the DTJ channel geometry. This fabrication technique eliminates the need for a photomask and cleanroom environment in addition shortening the cost and time. It takes only 20 min for fabrication. The minimum generated droplet diameter is within 40 µ m with more than 1000 droplets per second (at 10 mL / h . oil flow rate). The device is a high-throughput and low-cost micro-droplet formation aimed to be as a front-end to a dynamic droplet digital PCR (ddPCR) platform for use in resource-limited environment.