Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 58(37): 16525-16534, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39235261

RESUMEN

The reaction of dissolved Pb2+ with calcite surfaces at near-equilibrium conditions involves adsorption of Pb2+ and precipitation of secondary heteroepitaxial Pb-carbonate minerals. A more complex behavior is observed under far-from-equilibrium conditions, including strong inhibition of calcite dissolution, development of microtopography, and near-surface incorporation of multiple monolayers (ML) of Pb2+ without precipitation of secondary phases [where 1 ML ≡ 1 Ca/20.2 Å2, the crystallographic site density of the calcite (104) lattice plane]. However, the mechanistic controls governing far-from-equilibrium reactivity are not well understood. Here, we observe the interfacial incorporation of dissolved Pb2+ during the dissolution of calcite (104) surfaces at pH ∼ 3.7 in a flow-through reaction cell, revealing the formation of a ∼1 nm thick Pb-rich calcite layer with a total Pb coverage of ∼1.4 ML. These observations of the sorbed Pb distribution used resonant anomalous X-ray reflectivity, X-ray fluorescence, and nanoinfrared atomic force microscopy. We propose that this altered surface layer represents a novel sorption mode that is stabilized by conditions of sustained disequilibrium. This behavior may significantly impact the transport of dissolved metals during disequilibrium processes occurring in acid mine drainage and subsurface CO2 injection and, if appropriately accounted for, could improve the predictive capability of geochemical reactive-transport models.


Asunto(s)
Carbonato de Calcio , Plomo , Plomo/química , Carbonato de Calcio/química , Adsorción , Propiedades de Superficie , Iones
2.
Environ Sci Technol ; 58(16): 7133-7143, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38587400

RESUMEN

Reactions of mineral surfaces with dissolved metal ions at far-from-equilibrium conditions can deviate significantly from those in near-equilibrium systems due to steep concentration gradients, ion-surface interactions, and reactant transport effects that can lead to emergent behavior. We explored the effect of dissolved Pb2+ on the dissolution rate and topographic evolution of calcite (104) surfaces under far-from-equilibrium acidic conditions (pH 3.7) in a confined single-pass laminar-flow geometry. Operando measurements by digital holographic microscopy were conducted over a range of Pb2+ concentrations ([Pb2+] = 0 to 5 × 10-2 M) and flow velocities (v = 1.67-53.3 mm s-1). Calcite (104) surface dissolution rates decreased with increasing [Pb2+]. The inhibition of dissolution and the emergence of unique topographic features, including micropyramids, variable etch pit shapes, and larger scale topographic patterns, became increasingly apparent at [Pb2+] ≥ 5 × 10-3 M. A better understanding of such dynamic reactivity could be crucial for constructing accurate models of geochemical transport in aqueous carbonate systems.

3.
Nat Commun ; 10(1): 703, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741943

RESUMEN

Oxidation of magnetite (Fe3O4) has broad implications in geochemistry, environmental science and materials science. Spatially resolving strain fields and defect evolution during oxidation of magnetite provides further insight into its reaction mechanisms. Here we show that the morphology and internal strain distributions within individual nano-sized (~400 nm) magnetite crystals can be visualized using Bragg coherent diffractive imaging (BCDI). Oxidative dissolution in acidic solutions leads to increases in the magnitude and heterogeneity of internal strains. This heterogeneous strain likely results from lattice distortion caused by Fe(II) diffusion that leads to the observed domains of increasing compressive and tensile strains. In contrast, strain evolution is less pronounced during magnetite oxidation at elevated temperature in air. These results demonstrate that oxidative dissolution of magnetite can induce a rich array of strain and defect structures, which could be an important factor that contributes to the high reactivity observed on magnetite particles in aqueous environment.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda