Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513841

RESUMEN

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Asunto(s)
Acetilcisteína , Metabolismo Energético , Lesión Pulmonar , Mecloretamina , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Mecloretamina/toxicidad , Masculino , Metabolismo Energético/efectos de los fármacos , Ratas , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratas Sprague-Dawley , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Sustancias para la Guerra Química/toxicidad
2.
Toxicol Appl Pharmacol ; 461: 116388, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690086

RESUMEN

Chlorine (Cl2) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl2-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl2 (300 ppm, 25 min) in a whole-body exposure chamber. Bronchoalveolar lavage (BAL) fluid and cells, and lung tissue were collected 24 h later and analyzed for markers of injury, oxidative stress and macrophage activation. Exposure of mice to Cl2 resulted in increases in numbers of BAL cells and levels of IgM, total protein, and fibrinogen, indicating alveolar epithelial barrier dysfunction and inflammation. BAL levels of inflammatory proteins including surfactant protein (SP)-D, soluble receptor for glycation end product (sRAGE) and matrix metalloproteinase (MMP)-9 were also increased. Cl2 inhalation resulted in upregulation of phospho-histone H2A.X, a marker of double-strand DNA breaks in the bronchiolar epithelium and alveolar cells; oxidative stress proteins, heme oxygenase (HO)-1 and catalase were also upregulated. Flow cytometric analysis of BAL cells revealed increases in proinflammatory macrophages following Cl2 exposure, whereas numbers of resident and antiinflammatory macrophages were not altered. This was associated with increases in numbers of macrophages expressing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), markers of proinflammatory activation, with no effect on mannose receptor (MR) or Ym-1 expression, markers of antiinflammatory activation. Metabolic analysis of lung cells showed increases in glycolytic activity following Cl2 exposure in line with proinflammatory macrophage activation. Mechanistic understanding of Cl2-induced injury will be useful in the identification of efficacious countermeasures for mitigating morbidity and mortality of this highly toxic gas.


Asunto(s)
Cloro , Lesión Pulmonar , Ratones , Masculino , Animales , Cloro/toxicidad , Ratones Endogámicos C57BL , Pulmón , Macrófagos , Líquido del Lavado Bronquioalveolar , Estrés Oxidativo , Metabolismo Energético
3.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614266

RESUMEN

Modern pharmacotherapy of neurodegenerative diseases is predominantly symptomatic and does not allow vicious circles causing disease development to break. Protein misfolding is considered the most important pathogenetic factor of neurodegenerative diseases. Physiological mechanisms related to the function of chaperones, which contribute to the restoration of native conformation of functionally important proteins, evolved evolutionarily. These mechanisms can be considered promising for pharmacological regulation. Therefore, the aim of this review was to analyze the mechanisms of endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) in the pathogenesis of neurodegenerative diseases. Data on BiP and Sigma1R chaperones in clinical and experimental studies of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are presented. The possibility of neuroprotective effect dependent on Sigma1R ligand activation in these diseases is also demonstrated. The interaction between Sigma1R and BiP-associated signaling in the neuroprotection is discussed. The performed analysis suggests the feasibility of pharmacological regulation of chaperone function, possibility of ligand activation of Sigma1R in order to achieve a neuroprotective effect, and the need for further studies of the conjugation of cellular mechanisms controlled by Sigma1R and BiP chaperones.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ligandos , Chaperonas Moleculares/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico , Enfermedades Neurodegenerativas/tratamiento farmacológico
4.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298532

RESUMEN

Two groups of facts have been established in previous drug development studies of the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced decrease in binding ability of the GABAA receptor's benzodiazepine site. Second, fabomotizole is a Sigma1R chaperone agonist, and exposure to Sigma1R antagonists blocks its anxiolytic effect. To prove our main hypothesis of Sigma1R involvement in GABAA receptor-dependent pharmacological effects, we performed a series of experiments on BALB/c and ICR mice using Sigma1R ligands to study anxiolytic effects of benzodiazepine tranquilizers diazepam (1 mg/kg i.p.) and phenazepam (0.1 mg/kg i.p.) in the elevated plus maze test, the anticonvulsant effects of diazepam (1 mg/kg i.p.) in the pentylenetetrazole-induced seizure model, and the hypnotic effects of pentobarbital (50 mg/kg i.p.). Sigma1R antagonists BD-1047 (1, 10, and 20 mg/kg i.p.), NE-100 (1 and 3 mg/kg i.p.), and Sigma1R agonist PRE-084 (1, 5, and 20 mg/kg i.p.) were used in the experiments. Sigma1R antagonists have been found to attenuate while Sigma1R agonists can enhance GABAARs-dependent pharmacological effects.


Asunto(s)
Ansiolíticos , Receptores de GABA-A , Animales , Ratones , Ansiolíticos/farmacología , Anticonvulsivantes/farmacología , Benzodiazepinas/farmacología , Diazepam/farmacología , Hipnóticos y Sedantes/farmacología , Ligandos , Ratones Endogámicos ICR , Receptores de GABA-A/metabolismo , Informe de Investigación , Receptor Sigma-1
5.
J Pharmacol Exp Ther ; 382(3): 356-365, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970601

RESUMEN

Acute lung injury (ALI) is characterized by epithelial damage, barrier dysfunction, and pulmonary edema. Macrophage activation and failure to resolve play a role in ALI; thus, macrophage phenotype modulation is a rational target for therapeutic intervention. Large, lipid-laden macrophages have been observed in various injury models, including intratracheal bleomycin (ITB), suggesting that lipid storage may play a role in ALI severity. The endoplasmic reticulum-associated enzyme acyl coenzyme A acyltransferase-1 (Acat-1/Soat1) is highly expressed in macrophages, where it catalyzes the esterification of cholesterol, leading to intracellular lipid accumulation. We hypothesize that inhibition of Acat-1 will reduce macrophage activation and improve outcomes of lung injury in ITB. K-604, a selective inhibitor of Acat-1, was used to reduce cholesterol esterification and hence lipid accumulation in response to ITB. Male and female C57BL6/J mice (n = 16-21/group) were administered control, control + K-604, ITB, or ITB + K-604 on d0, control or K-604 on d3, and were sacrificed on day 7. ITB caused significant body weight loss and an increase in cholesterol accumulation in bronchoalveolar lavage cells. These changes were mitigated by Acat-1 inhibition. K-604 also significantly reduced ITB-induced alveolar thickening. Surfactant composition was normalized as indicated by a significant decrease in phospholipid: SP-B ratio in ITB+K-604 compared with ITB. K-604 administration preserved mature alveolar macrophages, decreased activation in response to ITB, and decreased the percentage mature and pro-fibrotic interstitial macrophages. These results show that inhibition of Acat-1 in the lung is associated with reduced inflammatory response to ITB-mediated lung injury. SIGNIFICANCE STATEMENT: Acyl coenzyme A acyltransferase-1 (Acat-1) is critical to lipid droplet formation, and thus inhibition of Acat-1 presents as a pharmacological target. Intratracheal administration of K-604, an Acat-1 inhibitor, reduces intracellular cholesterol ester accumulation in lung macrophages, attenuates inflammation and macrophage activation, and normalizes mediators of surface-active function after intratracheal bleomycin administration in a rodent model. The data presented within suggest that inhibition of Acat-1 in the lung improves acute lung injury outcomes.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Acilcoenzima A , Aciltransferasas , Animales , Bencimidazoles , Bleomicina , Colesterol , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Esterol O-Aciltransferasa/genética
6.
Toxicol Appl Pharmacol ; 457: 116281, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36244437

RESUMEN

Acute exposure to ozone causes oxidative stress, characterized by increases in nitric oxide (NO) and other reactive nitrogen species in the lung. NO has been shown to modify thiols generating S-nitrosothiols (SNOs); this results in altered protein function. In macrophages this can lead to changes in inflammatory activity which impact the resolution of inflammation. As SNO formation is dependent on the redox state of both the NO donor and the recipient thiol, the local microenvironment plays a key role in its regulation. This dictates not only the chemical feasibility of SNO formation but also mechanisms by which they may form. In these studies, we compared the ability of the SNO donors, ethyl nitrite (ENO), which targets both hydrophobic and hydrophilic thiols, SNO-propanamide (SNOPPM) which targets hydrophobic thiols, and S-nitroso-N-acetylcysteine. (SNAC) which targets hydrophilic thiols. to modify macrophage activation following ozone exposure. Mice were treated with air or ozone (0.8 ppm, 3 h) followed 1 h later by intranasal administration of ENO, SNOPPM or SNAC (1-500 µM) or appropriate controls. Mice were euthanized 48 h later. Each of the SNO donors reduced ozone-induced inflammation and modified the phenotype of macrophages both within the lung lining fluid and the tissue. ENO and SNOPPM were more effective than SNAC. These findings suggest that the hydrophobic SNO thiol pool targeted by SNOPPM and ENO plays a major role in regulating macrophage phenotype following ozone induced injury.

7.
Toxicol Appl Pharmacol ; 456: 116257, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174670

RESUMEN

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Alveolar Type II cells are primarily responsible for surfactant production; they also play a key role in lung repair following injury. Herein, we assessed the effects of NM on Type II cell activity. Male Wistar rats were administered NM (0.125 mg/kg) or PBS control intratracheally. Type II cells, lung tissue and BAL were collected 3 d later. NM exposure resulted in double strand DNA breaks in Type II cells, as assessed by expression of γH2AX; this was associated with decreased expression of the DNA repair protein, PARP1. Expression of HO-1 was upregulated and nitrotyrosine residues were noted in Type II cells after NM exposure indicating oxidative stress. NM also caused alterations in Type II cell energy metabolism; thus, both glycolysis and oxidative phosphorylation were reduced; there was also a shift from a reliance on oxidative phosphorylation to glycolysis for ATP production. This was associated with increased expression of pro-apoptotic proteins activated caspase-3 and -9, and decreases in survival proteins, ß-catenin, Nur77, HMGB1 and SOCS2. Intracellular signaling molecules important in Type II cell activity including PI3K, Akt2, phospho-p38 MAPK and phospho-ERK were reduced after NM exposure. This was correlated with dysregulation of surfactant protein production and impaired pulmonary functioning. These data demonstrate that Type II cells are targets of NM-induced DNA damage and oxidative stress. Impaired functioning of these cells may contribute to pulmonary toxicity caused by mustards.


Asunto(s)
Lesión Pulmonar Aguda , Mecloretamina , Ratas , Masculino , Animales , Mecloretamina/toxicidad , Ratas Wistar , Lesión Pulmonar Aguda/inducido químicamente , Células Epiteliales Alveolares , Estrés Oxidativo , Metabolismo Energético , Tensoactivos/efectos adversos
8.
Toxicol Appl Pharmacol ; 454: 116208, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998709

RESUMEN

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis; this is associated with a sequential accumulation of pro- and anti-inflammatory macrophages in the lung which have been implicated in NM toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating lipid homeostasis and inflammation. In these studies, we analyzed the role of FXR in inflammatory macrophage activation, lung injury and oxidative stress following NM exposure. Wild-type (WT) and FXR-/- mice were treated intratracheally with PBS (control) or NM (0.08 mg/kg). Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 3, 14 and 28 d later. NM caused progressive histopathologic alterations in the lung including inflammatory cell infiltration and alveolar wall thickening and increases in protein and cells in BAL; oxidative stress was also noted, as reflected by upregulation of heme oxygenase-1. These changes were more prominent in male FXR-/- mice. Flow cytometric analysis revealed that loss of FXR resulted in increases in proinflammatory macrophages at 3 d post NM; this correlated with upregulation of COX-2 and ARL11, markers of macrophage activation. Markers of anti-inflammatory macrophage activation, CD163 and STAT6, were also upregulated after NM; this response was exacerbated in FXR-/- mice at 14 d post-NM. These findings demonstrate that FXR plays a role in limiting macrophage inflammatory responses important in lung injury and oxidative stress. Maintaining or enhancing FXR function may represent a useful strategy in the development of countermeasures to treat mustard lung toxicity.


Asunto(s)
Lesión Pulmonar Aguda , Mecloretamina , Lesión Pulmonar Aguda/patología , Animales , Ciclooxigenasa 2/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Irritantes/toxicidad , Lípidos , Pulmón , Activación de Macrófagos , Masculino , Mecloretamina/toxicidad , Ratones
9.
Toxicol Appl Pharmacol ; 417: 115470, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647319

RESUMEN

Bleomycin is a cancer therapeutic known to cause lung injury which progresses to fibrosis. Evidence suggests that macrophages contribute to this pathological response. Tumor necrosis factor (TNF)α is a macrophage-derived pro-inflammatory cytokine implicated in lung injury. Herein, we investigated the role of TNFα in macrophage responses to bleomycin. Treatment of mice with bleomycin (3 U/kg, i.t.) caused histopathological changes in the lung within 3 d which culminated in fibrosis at 21 d. This was accompanied by an early (3-7 d) influx of CD11b+ and iNOS+ macrophages into the lung, and Arg-1+ macrophages at 21 d. At this time, epithelial cell dysfunction, defined by increases in total phospholipids and SP-B was evident. Treatment of mice with anti-TNFα antibody (7.5 mg/kg, i.v.) beginning 15-30 min after bleomycin, and every 5 d thereafter reduced the number and size of fibrotic foci and restored epithelial cell function. Flow cytometric analysis of F4/80+ alveolar macrophages (AM) isolated by bronchoalveolar lavage and interstitial macrophages (IM) by tissue digestion identified resident (CD11b-CD11c+) and immature infiltrating (CD11b+CD11c-) AM, and mature (CD11b+CD11c+) and immature (CD11b+CD11c-) IM subsets in bleomycin treated mice. Greater numbers of mature (CD11c+) infiltrating (CD11b+) AM expressing the anti-inflammatory marker, mannose receptor (CD206) were observed at 21 d when compared to 7 d post bleomycin. Mature proinflammatory (Ly6C+) IM were greater at 7 d relative to 21 d. These cells transitioned into mature anti-inflammatory/pro-fibrotic (CD206+) IM between 7 and 21 d. Anti-TNFα antibody heightened the number of CD11b+ AM in the lung without altering their activation state. Conversely, it reduced the abundance of mature proinflammatory (Ly6C+) IM in the tissue at 7 d and immature pro-fibrotic IM at 21 d. Taken together, these data suggest that TNFα inhibition has beneficial effects in bleomycin induced injury, restoring epithelial function and reducing numbers of profibrotic IM and the extent of pulmonary fibrosis.


Asunto(s)
Antiinflamatorios/farmacología , Pulmón/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neumonía/prevención & control , Fibrosis Pulmonar/prevención & control , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Bleomicina , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibrosis , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Fenotipo , Fosfolípidos/metabolismo , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Toxicol Appl Pharmacol ; 428: 115677, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390737

RESUMEN

Sulfur mustard (SM) is a bifunctional alkylating agent that causes severe injury to the respiratory tract. This is accompanied by an accumulation of macrophages in the lung and the release of the proinflammatory cytokine, tumor necrosis factor (TNF)α. In these studies, we analyzed the effects of blocking TNFα on lung injury, inflammation and oxidative stress induced by inhaled SM. Rats were treated with SM vapor (0.4 mg/kg) or air control by intratracheal inhalation. This was followed 15-30 min later by anti-TNFα antibody (15mg/kg, i.v.) or PBS control. Animals were euthanized 3 days later. Anti-TNFα antibody was found to blunt SM-induced peribronchial edema, perivascular inflammation and alveolar plasma protein and inflammatory cell accumulation in the lung; this was associated with reduced expression of PCNA in histologic sections and decreases in BAL levels of fibrinogen. SM-induced increases in inflammatory proteins including soluble receptor for glycation end products, its ligand, high mobility group box-1, and matrix metalloproteinase-9 were also reduced by anti-TNFα antibody administration, along with increases in numbers of lung macrophages expressing TNFα, cyclooxygenase-2 and inducible nitric oxide synthase. This was correlated with reduced oxidative stress as measured by expression of heme oxygenase-1 and Ym-1. Together, these data suggest that inhibiting TNFα may represent an efficacious approach to mitigating acute lung injury, inflammatory macrophage activation, and oxidative stress induced by inhaled sulfur mustard.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Gas Mostaza/toxicidad , Estrés Oxidativo/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Lesión Pulmonar Aguda/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Sustancias para la Guerra Química/toxicidad , Exposición por Inhalación/efectos adversos , Masculino , Gas Mostaza/administración & dosificación , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064275

RESUMEN

Sigma-1 receptor (chaperone Sigma1R) is an intracellular protein with chaperone functions, which is expressed in various organs, including the brain. Sigma1R participates in the regulation of physiological mechanisms of anxiety (Su, T. P. et al., 2016) and reactions to emotional stress (Hayashi, T., 2015). In 2006, fabomotizole (ethoxy-2-[2-(morpholino)-ethylthio]benzimidazole dihydrochloride) was registered in Russia as an anxiolytic (Seredenin S. and Voronin M., 2009). The molecular targets of fabomotizole are Sigma1R, NRH: quinone reductase 2 (NQO2), and monoamine oxidase A (MAO-A) (Seredenin S. and Voronin M., 2009). The current study aimed to clarify the dependence of fabomotizole anxiolytic action on its interaction with Sigma1R and perform a docking analysis of fabomotizole interaction with Sigma1R. An elevated plus maze (EPM) test revealed that the anxiolytic-like effect of fabomotizole (2.5 mg/kg i.p.) administered to male BALB/c mice 30 min prior EPM exposition was blocked by Sigma1R antagonists BD-1047 (1.0 mg/kg i.p.) and NE-100 (1.0 mg/kg i.p.) pretreatment. Results of initial in silico study showed that fabomotizole locates in the active center of Sigma1R, reproducing the interactions with the site's amino acids common for established Sigma1R ligands, with the ΔGbind value closer to that of agonist (+)-pentazocine in the 6DK1 binding site.


Asunto(s)
Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Bencimidazoles/farmacología , Chaperonas Moleculares/metabolismo , Morfolinas/farmacología , Receptores sigma/metabolismo , Animales , Anisoles/farmacología , Sitios de Unión/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Etilenodiaminas/farmacología , Ligandos , Masculino , Ratones , Ratones Endogámicos BALB C , Propilaminas/farmacología , Federación de Rusia , Receptor Sigma-1
12.
Toxicol Appl Pharmacol ; 407: 115236, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32931793

RESUMEN

Fatty acid nitroalkenes are reversibly-reactive electrophiles, endogenously detectable at nM concentrations, displaying anti-inflammatory actions. Nitroalkenes like 9- or 10-nitro-octadec-9-enoic acid (e.g. nitro-oleic acid, OA-NO2) pleiotropically suppress cardiovascular inflammatory responses, with pulmonary responses less well defined. C57BL/6 J male mice were intratracheally administered bleomycin (3 U/kg, ITB), to induce pulmonary inflammation and acute injury, or saline and were treated with 50 µL OA-NO2 (50 µg) or vehicle in the same instillation and 72 h post-exposure to assess anti-inflammatory properties. Bronchoalveolar lavage (BAL) and lung tissue were collected 7d later. ITB mice lost body weight, with OA-NO2 mitigating this loss (-2.3 ± 0.94 vs -0.4 ± 0.83 g). Histology revealed ITB induced cellular infiltration, proteinaceous debris deposition, and tissue injury, all significantly reduced by OA-NO2. Flow cytometry analysis of BAL demonstrated loss of Siglec F+/F4/80+/CD45+ alveolar macrophages with ITB (89 ± 3.5 vs 30 ± 3.7%). Analysis of CD11b/CD11c expressing cells showed ITB-induced non-resident macrophage infiltration (4 ± 2.3 vs 43 ± 2.4%) was decreased by OA-NO2 (24 ± 2.4%). Additionally, OA-NO2 attenuated increases in mature, activated interstitial macrophages (23 ± 4.8 vs. 43 ± 5.4%) in lung tissue digests. Flow analysis of CD31-/CD45-/Sca-1+ mesenchymal cells revealed ITB increased CD44+ populations (1 ± 0.4 vs 4 ± 0.4MFI), significantly reduced by OA-NO2 (3 ± 0.4MFI). Single cell analysis of mesenchymal cells by western blotting showed profibrotic ZEB1 protein expression induced by ITB. Lung digest CD45+ cells revealed ITB increased HMGB1+ cells, with OA-NO2 suppressing this response. Inhibition of HMGB1 expression correlated with increased basal phospholipid production and SP-B expression in the lung lining. These findings indicate OA-NO2 inhibits ITB-induced pro-inflammatory responses by modulating resident cell function.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Alquenos/farmacología , Bleomicina , Ácidos Grasos/farmacología , Inflamación/prevención & control , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Animales , Líquido del Lavado Bronquioalveolar , Inflamación/inducido químicamente , Inflamación/patología , Antígenos Comunes de Leucocito/metabolismo , Pulmón/patología , Macrófagos Alveolares/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fosfolípidos/metabolismo , Pérdida de Peso/efectos de los fármacos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/biosíntesis , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
13.
Toxicol Appl Pharmacol ; 387: 114798, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31678244

RESUMEN

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Herein, we developed a murine model of NM-induced pulmonary toxicity with the goal of assessing inflammatory mechanisms of injury. C57BL/6J mice were euthanized 1-28 d following intratracheal exposure to NM (0.08 mg/kg) or PBS control. NM caused progressive alveolar epithelial thickening, perivascular inflammation, bronchiolar epithelial hyperplasia, interstitial fibroplasia and fibrosis, peaking 14 d post exposure. Enlarged foamy macrophages were also observed in the lung 14 d post NM, along with increased numbers of microparticles in bronchoalveolar lavage fluid (BAL). Following NM exposure, rapid and prolonged increases in BAL cells, protein, total phospholipids and surfactant protein (SP)-D were also detected. Flow cytometric analysis showed that CD11b+Ly6G-F4/80+Ly6Chi proinflammatory macrophages accumulated in the lung after NM, peaking at 3 d. This was associated with macrophage expression of HMGB1 and TNFα in histologic sections. CD11b+Ly6G-F4/80+Ly6Clo anti-inflammatory/pro-fibrotic macrophages also increased in the lung after NM peaking at 14 d, a time coordinate with increases in TGFß expression and fibrosis. NM exposure also resulted in alterations in pulmonary mechanics including increases in tissue elastance and decreases in compliance and static compliance, most prominently at 14 d. These findings demonstrate that NM induces structural and inflammatory changes in the lung that correlate with aberrations in pulmonary function. This mouse model will be useful for mechanistic studies of mustard lung injury and for assessing potential countermeasures.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Sustancias para la Guerra Química/toxicidad , Pulmón/patología , Mecloretamina/toxicidad , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Animales , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Fibrosis , Humanos , Pulmón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos
14.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L539-L549, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411060

RESUMEN

Surfactant protein-D (SP-D) is a regulator of pulmonary innate immunity whose oligomeric state can be altered through S-nitrosylation to regulate its signaling function in macrophages. Here, we examined how nitrosylation of SP-D alters the phenotypic response of macrophages to stimuli both in vivo and in vitro. Bronchoalveolar lavage (BAL) from C57BL6/J and SP-D-overexpressing (SP-D OE) mice was incubated with RAW264.7 cells ± LPS. LPS induces the expression of the inflammatory genes Il1b and Nos2, which is reduced 10-fold by SP-D OE-BAL. S-nitrosylation of the SP-D OE-BAL (SNO-SP-D OE-BAL) abrogated this inhibition. SNO-SP-D OE-BAL alone induced Il1b and Nos2 expression. PCR array analysis of macrophages incubated with SP-D OE-BAL (±LPS) shows increased expression of repair genes, Ccl20, Cxcl1, and Vcam1, that was accentuated by LPS. LPS increases inflammatory gene expression, Il1a, Nos2, Tnf, and Ptgs2, which was accentuated by SNO-SP-D OE-BAL but inhibited by SP-D OE-BAL. The transcription factor NF-κB was identified as a target for SNO-SP-D by IPA, which was confirmed by Trans-AM ELISA in vitro. In vivo, SP-D overexpression increases the burden of infection in a Pneumocystis model while increasing cellular recruitment. Expression of iNOS and the production of NO metabolites were significantly reduced in SP-D OE mice relative to C57BL6/J. Inflammatory gene expression was increased in infected C57BL6/J mice but decreased in SP-D OE. SP-D oligomeric structure was disrupted in C57BL6/J infected mice but unaltered within SP-D OE. Thus SP-D modulates macrophage phenotype and the balance of multimeric to trimeric SP-D is critical to this regulation.


Asunto(s)
Macrófagos Alveolares/inmunología , Compuestos Nitrosos/metabolismo , Infecciones por Pneumocystis/genética , Procesamiento Proteico-Postraduccional , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Quimiocina CCL20/genética , Quimiocina CCL20/inmunología , Quimiocina CXCL1/genética , Quimiocina CXCL1/inmunología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/inmunología , Femenino , Inmunidad Innata , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Lipopolisacáridos/farmacología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/inmunología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Compuestos Nitrosos/inmunología , Fenotipo , Pneumocystis/crecimiento & desarrollo , Pneumocystis/patogenicidad , Infecciones por Pneumocystis/inmunología , Infecciones por Pneumocystis/metabolismo , Infecciones por Pneumocystis/microbiología , Proteína D Asociada a Surfactante Pulmonar/genética , Proteína D Asociada a Surfactante Pulmonar/inmunología , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
15.
Am J Respir Cell Mol Biol ; 53(1): 96-104, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25474372

RESUMEN

Pulmonary lymphangioleiomyomatosis (LAM) is a rare lung disease caused by mutations of the tumor suppressor genes, tuberous sclerosis complex (TSC) 1 or TSC2. LAM affects women almost exclusively, and it is characterized by neoplastic growth of atypical smooth muscle-like TSC2-null LAM cells in the pulmonary interstitium, cystic destruction of lung parenchyma, and progressive decline in lung function. In this study, we hypothesized that TSC2-null lesions promote a proinflammatory environment, which contributes to lung parenchyma destruction. Using a TSC2-null female murine LAM model, we demonstrate that TSC2-null lesions promote alveolar macrophage accumulation, recruitment of immature multinucleated cells, an increased induction of proinflammatory genes, nitric oxide (NO) synthase 2, IL-6, chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein 1 (MCP1), chemokine (C-X-C motif) ligand 1 (CXCL1)/keratinocyte chemoattractant (KC), and up-regulation of IL-6, KC, MCP-1, and transforming growth factor-ß1 levels in bronchoalveolar lavage fluid. Bronchoalveolar lavage fluid also contained an increased level of surfactant protein (SP)-D, but not SP-A, significant reduction of SP-B levels, and a resultant increase in alveolar surface tension. Consistent with the growth of TSC2-null lesions, NO levels were also increased and, in turn, modified SP-D through S-nitrosylation, forming S-nitrosylated SP-D, a known consequence of lung inflammation. Progressive growth of TSC2-null lesions was accompanied by elevated levels of matrix metalloproteinase-3 and -9. This report demonstrates a link between growth of TSC2-null lesions and inflammation-induced surfactant dysfunction that might contribute to lung destruction in LAM.


Asunto(s)
Linfangioleiomiomatosis/metabolismo , Linfangioleiomiomatosis/patología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Animales , Lavado Broncoalveolar , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Linfangioleiomiomatosis/genética , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Mutantes , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína A Asociada a Surfactante Pulmonar/genética , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/genética , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 309(12): L1447-54, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26432869

RESUMEN

Pulmonary lymphangioleiomyomatosis (LAM), a rare progressive lung disease associated with mutations of the tuberous sclerosis complex 2 (Tsc2) tumor suppressor gene, manifests by neoplastic growth of LAM cells, induction of cystic lung destruction, and respiratory failure. LAM severity correlates with upregulation in serum of the prolymphangiogenic vascular endothelial growth factor D (VEGF-D) that distinguishes LAM from other cystic diseases. The goals of our study was to determine whether Tsc2 deficiency upregulates VEGF-D, and whether axitinib, the Food and Drug Administration-approved small-molecule inhibitor of VEGF receptor (VEGFR) signaling, will reduce Tsc2-null lung lesion growth in a mouse model of LAM. Our data demonstrate upregulation of VEGF-D in the serum and lung lining in mice with Tsc2-null lesions. Progressive growth of Tsc2-null lesions induces recruitment and activation of inflammatory cells and increased nitric oxide production. Recruited cells isolated from the lung lining of mice with Tsc2-null lesions demonstrate upregulated expression of provasculogenic Vegfa, prolymphangiogenic Figf, and proinflammatory Nos2, Il6, and Ccl2 genes. Importantly, axitinib is an effective inhibitor of Tsc2-null lesion growth and inflammatory cell recruitment, which correlates with reduced VEGF-D levels in serum and lung lining. Our data demonstrate that pharmacological inhibition of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth, attenuates recruitment and activation of inflammatory cells, and reduces VEGF-D levels systemically and in the lung lining. Our study suggests a potential therapeutic benefit of inhibition of VEGFR signaling for treatment of LAM.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Imidazoles/farmacología , Indazoles/farmacología , Pulmón/efectos de los fármacos , Linfangioleiomiomatosis/tratamiento farmacológico , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Animales , Axitinib , Línea Celular Tumoral , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Femenino , Pulmón/metabolismo , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatosis/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Regulación hacia Arriba/efectos de los fármacos , Factor D de Crecimiento Endotelial Vascular/metabolismo
17.
Toxicol Appl Pharmacol ; 278(1): 53-64, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24582687

RESUMEN

Acute Cl2 exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl2 inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60ppm-hour Cl2 dose, and were euthanized 3, 24 and 48h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24h. Cl2 exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO3(-) or NO2(-). Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl2 exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl2 inhalation.


Asunto(s)
Cloro/toxicidad , Pulmón/efectos de los fármacos , Neumonía/inducido químicamente , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Resistencia de las Vías Respiratorias , Animales , Biomarcadores/metabolismo , Elasticidad , Exposición a Riesgos Ambientales , Gases , Regulación de la Expresión Génica , Inmunidad Innata/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Rendimiento Pulmonar , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Permeabilidad , Neumonía/genética , Neumonía/inmunología , Neumonía/metabolismo , Neumonía/patología , Neumonía/fisiopatología , Respiración con Presión Positiva , ARN Mensajero/metabolismo , Pruebas de Función Respiratoria , Factores de Tiempo
18.
Toxicol Sci ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749002

RESUMEN

Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 hr) or air control followed 24 hr later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.

19.
Am J Physiol Renal Physiol ; 304(10): F1295-307, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23486012

RESUMEN

Aquaporin 11 (AQP11) is a newly described member of the protein family of transport channels. AQP11 associates with the endoplasmic reticulum (ER) and is highly expressed in proximal tubular epithelial cells in the kidney. Previously, we identified and characterized a recessive mutation of the highly conserved Cys227 to Ser227 in mouse AQP11 that caused proximal tubule (PT) injury and kidney failure in mutant mice. The current study revealed induction of ER stress, unfolded protein response, and apoptosis as molecular mechanisms of this PT injury. Cys227Ser mutation interfered with maintenance of AQP11 oligomeric structure. AQP11 is abundantly expressed in the S1 PT segment, a site of major renal glucose flux, and Aqp11 mutant mice developed PT-specific mitochondrial injury. Glucose increased AQP11 protein expression in wild-type kidney and upregulation of AQP11 expression by glucose in vitro was prevented by phlorizin, an inhibitor of sodium-dependent glucose transport across PT. Total AQP11 levels in heterozygotes were higher than in wild-type mice but were not further increased in response to glucose. In Aqp11 insufficient PT cells, glucose potentiated increases in reactive oxygen species (ROS) production. ROS production was also elevated in Aqp11 mutation carriers. Phenotypically normal mice heterozygous for the Aqp11 mutation repeatedly treated with glucose showed increased blood urea nitrogen levels that were prevented by the antioxidant sulforaphane or by phlorizin. Our results indicate an important role for AQP11 to prevent glucose-induced oxidative stress in proximal tubules.


Asunto(s)
Acuaporinas/genética , Retículo Endoplásmico/metabolismo , Riñón/metabolismo , Estrés Oxidativo/genética , Insuficiencia Renal/genética , Animales , Acuaporinas/metabolismo , Línea Celular , Estrés del Retículo Endoplásmico/fisiología , Ratones , Mutación , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal/metabolismo , Regulación hacia Arriba
20.
Toxicol Sci ; 194(1): 109-119, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37202362

RESUMEN

Exposure to ozone causes decrements in pulmonary function, a response associated with alterations in lung lipids. Pulmonary lipid homeostasis is dependent on the activity of peroxisome proliferator activated receptor gamma (PPARγ), a nuclear receptor that regulates lipid uptake and catabolism by alveolar macrophages (AMs). Herein, we assessed the role of PPARγ in ozone-induced dyslipidemia and aberrant lung function in mice. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in a significant reduction in lung hysteresivity at 72 h post exposure; this correlated with increases in levels of total phospholipids, specifically cholesteryl esters, ceramides, phosphatidylcholines, phosphorylethanolamines, sphingomyelins, and di- and triacylglycerols in lung lining fluid. This was accompanied by a reduction in relative surfactant protein-B (SP-B) content, consistent with surfactant dysfunction. Administration of the PPARγ agonist, rosiglitazone (5 mg/kg/day, i.p.) reduced total lung lipids, increased relative amounts of SP-B, and normalized pulmonary function in ozone-exposed mice. This was associated with increases in lung macrophage expression of CD36, a scavenger receptor important in lipid uptake and a transcriptional target of PPARγ. These findings highlight the role of alveolar lipids as regulators of surfactant activity and pulmonary function following ozone exposure and suggest that targeting lipid uptake by lung macrophages may be an efficacious approach for treating altered respiratory mechanics.


Asunto(s)
Dislipidemias , Ozono , Ratones , Animales , PPAR gamma/metabolismo , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Ozono/toxicidad , Fosfolípidos/metabolismo , Tensoactivos , Dislipidemias/inducido químicamente , Dislipidemias/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda