Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nanotechnology ; 34(46)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37567162

RESUMEN

The structural evolution of black arsenic-phosphorous (b-AsxP1-x) alloys with varying arsenic concentrations was investigated under hydrostatic pressure usingin situRaman spectroscopy. High-pressure experiments were conducted using a diamond anvil cell, which revealed pressure-induced shifts in vibrational modes associated with P-P bonds (A1g,A2g,B2g), As-As bonds (A1g,A2g,B2g), and As-P bonds in b-AsxP1-xalloys. Two distinct pressure regimes were observed. In the first regime (region I), all vibrational modes exhibited a monotonic upshift, indicating phonon hardening due to hydrostatic pressure. In the second regime (region II), As0.4P0.6and As0.6P0.4alloys displayed a linear blueshift (or negligible change in some modes) at a reduced rate, suggesting local structural reorganization with less compression on the bonds. Notably, the alloy with the highest As concentration, As0.8P0.2, exhibited anomalous behavior in the second pressure regime, with a downward shift observed in all As-As and As-P Raman modes (and some P-P modes). Interestingly, the emergence of new peaks corresponding to theEgmode andA1gmode of the gray-As phase was observed in this pressure range, indicating compressive strain-induced structural changes. The anomalous change in region II confirms the formation of a new local structure, characterized by elongation of the P-P, As-As, and As-P bonds along the zigzag direction within the b-AsxP1-xphase, possibly near the grain boundary. Additionally, a gray-As phase undergoes compressive structural changes. This study underscores the significance of pressure in inducing structural transformations and exploring novel phases in two-dimensional materials, including b-AsxP1-xalloys.

2.
Nanotechnology ; 31(42): 425707, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32604079

RESUMEN

We studied and compared the effect of tensile strain on the Raman spectra of black phosphorus (BP) and molybdenum ditelluride (MoTe2) crystals by using a simple custom strain device. In-situ Raman spectroscopy on BP revealed clear red shifting of all three phonon modes, A1 g, B2g and A2 g, under tensile stress. From our theoretical analyses, we found that such red shifting strongly depends on the direction of the strain exerted on the system even within the elastic deformation limit (i.e. strain ≤ 1 %). In particular, calculated results for the strain along the armchair direction are consistent with our experimental data, confirming that the strain applied to the sample acts effectively along the armchair direction. In a comparative study, we found that the effect of strain on the Raman shifting is larger for BP than that for MoTe2, presumably due to the smaller Young's modulus of BP. We also see a remarkable resemblance between donor-type intercalation induced vibrational properties and tensile stress-induced vibrational properties in BP. We anticipate that our method of in-situ Raman spectroscopy can be an effective tool that can allow observation of strain effect directly which is critical for future flexible electronic devices.

3.
Talanta ; 276: 126197, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728800

RESUMEN

Whereas the close associations of cesium ion with organochlorine compounds have been previously documented, the present report is the first attempt to exploit these interactions to create a trichloroethylene (TCE)-selective sensor. Gold monolayer-protected clusters peripherally functionalized with Cs+ ions were used to prepare a chemiresistance film on MEMS-fabricated interdigitated electrodes. Vapor sensing properties of the cesium-rich chemiresistor were determined using a panel of chlorinated hydrocarbons including TCE as well as polar and non-polar VOCs for comparison. The sensor was selective and highly sensitive toward VOCs containing a 1,2-dichloro group at concentrations as low as 0.1 ppm. The results suggest the key interaction contributing to sensor response is a bidentate, metallocycle-like coordination of the 1,2-dichloro group to the cesium cations at the sensor surface.

4.
Adv Sci (Weinh) ; 9(31): e2203148, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36068163

RESUMEN

Phosphorene nanoribbons (PNRs) have inspired strong research interests to explore their exciting properties that are associated with the unique two-dimensional (2D) structure of phosphorene as well as the additional quantum confinement of the nanoribbon morphology, providing new materials strategy for electronic and optoelectronic applications. Despite several important properties of PNRs, the production of these structures with narrow widths is still a great challenge. Here, a facile and straightforward approach to synthesize PNRs via an electrochemical process that utilize the anisotropic Na+ diffusion barrier in black phosphorus (BP) along the [001] zigzag direction against the [100] armchair direction, is reported. The produced PNRs display widths of good uniformity (10.3 ± 3.8 nm) observed by high-resolution transmission electron microscopy, and the suppressed B2g vibrational mode from Raman spectroscopy results. More interestingly, when used in field-effect transistors, synthesized bundles exhibit the n-type behavior, which is dramatically different from bulk BP flakes which are p-type. This work provides insights into a new synthesis approach of PNRs with confined widths, paving the way toward the development of phosphorene and other highly anisotropic nanoribbon materials for high-quality electronic applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda