Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cancer Sci ; 115(4): 1102-1113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287511

RESUMEN

Worldwide prevalence of cervical cancer decreased significantly with the use of human papilloma virus (HPV)-targeted prophylactic vaccines. However, these multivalent antiviral vaccines are inert against established tumors, which leave patients with surgical ablative options possibly resulting in long-term reproductive complications and morbidity. In an attempt to bypass this unmet medical need, we designed a new E7 protein-based vaccine formulation using Accum™, a technology platform designed to promote endosome-to-cytosol escape as a means to enhance protein accumulation in target cells. Prophylactic vaccination of immunocompetent mice using the Accum-E7 vaccine (aE7) leads to complete protection from cervical cancer despite multiple challenges conducted with ascending C3.43 cellular doses (0.5-, 1.0-, and 2.0 × 106 cells). Moreover, the humoral response induced by aE7 was higher in magnitude compared with naked E7 protein vaccination and displayed potent inhibitory effects on C3.43 proliferation in vitro. When administered therapeutically to animals with pre-established C3.43 or Tal3 tumors, the vaccine-induced response synergized with multiple immune checkpoint blockers (anti-PD-1, anti-CTLA4, and anti-CD47) to effectively control tumor growth. Mechanistically, the observed therapeutic effect requires cross-presenting dendritic cells as well as CD8 T cells predominantly, with a non-negligible role played by both CD4+ and CD19+ lymphocytes. good laboratory practice (GLP) studies revealed that aE7 is immunogenic and well tolerated by immunocompetent mice with no observed adverse effects despite the use of a fourfold exceeding dose. In a nutshell, aE7 represents an ideal vaccine candidate for further clinical development as it uses a single engineered protein capable of exhibiting both prophylactic and therapeutic activity.


Asunto(s)
Vacunas contra el Cáncer , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Animales , Ratones , Neoplasias del Cuello Uterino/patología , Proteínas E7 de Papillomavirus/metabolismo , Linfocitos T CD8-positivos , Vacunación , Ratones Endogámicos C57BL , Infecciones por Papillomavirus/prevención & control , Proteínas Oncogénicas Virales/genética
2.
J Transl Med ; 22(1): 532, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831284

RESUMEN

BACKGROUND: The Accum® platform was initially designed to accumulate biomedicines in target cells by inducing endosomal-to-cytosol escape. Interestingly however, the use of unconjugated Accum® was observed to trigger cell death in a variety of cancer cell lines; a property further exploited in the development of Accum®-based anti-cancer therapies. Despite the impressive pro-killing abilities of the parent molecule, some cancer cell lines exhibited resistance. This prompted us to test additional Accum® variants, which led to the identification of the AccuTOX® molecule. METHODS: A series of flow-cytometry and cell-based assays were used to assess the pro-killing properties of AccuTOX® along with its ability to trigger the production of reactive oxygen species (ROS), endosomal breaks and antigen presentation. RNA-seq was also conducted to pinpoint the most prominent processes modulated by AccuTOX® treatment in EL4 T-cell lymphoma. Finally, the therapeutic potency of intratumorally-injected AccuTOX® was evaluated in three different murine solid tumor models (EL4, E0771 and B16) both as a monotherapy or in combination with three immune-checkpoint inhibitors (ICI). RESULTS: In total, 7 Accum® variants were screened for their ability to induce complete cell death in 3 murine (EL4, B16 and E0771) and 3 human (MBA-MD-468, A549, and H460) cancer cell lines of different origins. The selected compound (hereafter refereed to as AccuTOX®) displayed an improved killing efficiency (~ 5.5 fold compared to the parental Accum®), while retaining its ability to trigger immunogenic cell death, ROS production, and endosomal breaks. Moreover, transcriptomic analysis revealed that low dose AccuTOX® enhances H2-Kb cell surface expression as well as antigen presentation in cancer cells. The net outcome culminates in impaired T-cell lymphoma, breast cancer and melanoma growth in vivo especially when combined with anti-CD47, anti-CTLA-4 or anti-PD-1 depending on the animal model. CONCLUSIONS: AccuTOX® exhibits enhanced cancer killing properties, retains all the innate characteristics displayed by the parental Accum® molecule, and synergizes with various ICI in controlling tumor growth. These observations will certainly pave the path to continue the clinical development of this lead compound against multiple solid tumor indications.


Asunto(s)
Sinergismo Farmacológico , Inhibidores de Puntos de Control Inmunológico , Especies Reactivas de Oxígeno , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/inmunología , Ratones Endogámicos C57BL , Femenino , Muerte Celular/efectos de los fármacos
3.
Cancer Sci ; 114(12): 4499-4510, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776054

RESUMEN

The Accum™ technology was initially designed to enhance the bioaccumulation of a given molecule in target cells. It does so by triggering endosomal membrane damages allowing endocytosed products to enter the cytosol, escaping the harsh environmental cues of the endosomal lumen. In an attempt to minimize manufacturing hurdles associated with Accum™ conjugation, we tested whether free Accum™ admixed with antigens could lead to outcomes similar to those obtained with conjugated products. Surprisingly, unconjugated Accum™ was found to promote cell death in vitro, an observation further confirmed on various murine tumor cell lines (EL4, CT-26, B16, and 4 T1). At the molecular level, unconjugated Accum™ triggers the production of reactive oxygen species and elicits immunogenic cell death while retaining its innate ability to cause endosomal damages. When administered as a monotherapy to animals with pre-established EL4 T-cell lymphoma, Accum™ controlled tumor growth in a dose-dependent manner, and its therapeutic effect relies on CD4 and CD8 T cells. Although unconjugated Accum™ synergizes with various immune checkpoint inhibitors (anti-CTLA4, anti-PD-1, or anti-CD47) at controlling tumor growth, its therapeutic potency could not be further enhanced when combined with all three tested immune checkpoint inhibitors at once due to its dependency on a specific dosing regimen. In sum, we report in this study an unprecedented new function for unconjugated Accum™ as a novel anticancer molecule. These results could pave the path for a new line of investigation aimed at exploring the pro-killing properties of additional Accum™ variants as a mean to develop second-generation anticancer therapeutics.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Linfoma de Células T , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral
4.
J Cell Biochem ; 118(5): 1003-1013, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27463229

RESUMEN

Protandim and 6-gingerol, two potent nutraceuticals, have been shown to decrease free radicals production through enhancing endogenous antioxidant enzymes. In this study, we evaluated the effects of these products on the expression of different factors involved in osteoarthritis (OA) process. Human OA chondrocytes were treated with 1 ng/ml IL-1ß in the presence or absence of protandim (0-10 µg/ml) or 6-gingerol (0-10 µM). OA was induced surgically in mice by destabilization of the medial meniscus (DMM). The animals were treated weekly with an intraarticular injection of 10 µl of vehicle or protandim (10 µg/ml) for 8 weeks. Sham-operated mice served as controls. In vitro, we demonstrated that protandim and 6-gingerol preserve cell viability and mitochondrial metabolism and prevented 4-hydroxynonenal (HNE)-induced cell mortality. They activated Nrf2 transcription factor, abolished IL-1ß-induced NO, PGE2 , MMP-13, and HNE production as well as IL-ß-induced GSTA4-4 down-regulation. Nrf2 overexpression reduced IL-1ß-induced HNE and MMP-13 as well as IL-1ß-induced GSTA4-4 down-regulation. Nrf2 knockdown following siRNA transfection abolished protandim protection against oxidative stress and catabolism. The activation of MAPK and NF-κB by IL-1ß was not affected by 6-gingerol. In vivo, we observed that Nrf2 and GSTA4-4 expression was significantly lower in OA cartilage from humans and mice compared to normal controls. Interestingly, protandim administration reduced OA score in DMM mice. Altogether, our data indicate that protandim and 6-gingerol are essential in preserving cartilage and abolishing a number of factors known to be involved in OA pathogenesis. J. Cell. Biochem. 118: 1003-1013, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Antiinflamatorios/administración & dosificación , Catecoles/administración & dosificación , Condrocitos/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Alcoholes Grasos/administración & dosificación , Osteoartritis/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Catecoles/farmacología , Supervivencia Celular , Células Cultivadas , Condrocitos/citología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Alcoholes Grasos/farmacología , Glutatión Transferasa/metabolismo , Humanos , Inyecciones Intraarticulares , Interleucina-1beta/efectos adversos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Inflamm Res ; 66(8): 637-651, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28447122

RESUMEN

BACKGROUND: Over the years, many theories have been proposed and examined to better explain the etiology and development of osteoarthritis (OA). The characteristics of joint destruction are one of the most important aspects in disease progression. Therefore, investigating different factors and signaling pathways involved in the alteration of extracellular matrix (ECM) turnover, and the subsequent catabolic damage to cartilage holds chief importance in understanding OA development. Among these factors, reactive oxygen species (ROS) have been at the forefront of the physiological and pathophysiological OA investigation. FINDINGS: In the last decades, research studies provided an enormous volume of data supporting the involvement of ROS in OA. Most interestingly, published data regarding the effect of exogenous antioxidant therapy in OA lack conclusive results from clinical trials to back up in vitro data. Accordingly, it is rational to suggest that there are other reactive species in OA that are not taken into account. Thus, our present review is focused on our current understanding of the involvement of lipid peroxidation-derived 4-hydroxynonenal (HNE) in OA. CONCLUSION: Our findings, like those in the literature, illustrate the central role played by HNE in the regulation of a number of factors involved in joint homeostasis. HNE could thus be considered as an attractive therapeutic target in OA.


Asunto(s)
Aldehídos/metabolismo , Peroxidación de Lípido , Osteoartritis/metabolismo , Animales , Apoptosis , Condrocitos , Humanos , Estrés Oxidativo
6.
Chem Res Toxicol ; 27(9): 1556-65, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25116078

RESUMEN

Osteoarthritis (OA) is caused by the degradation of articular cartilage and affects approximately 80% of people over the age of 65. Matrix metalloproteinases (MMPs) belong to a group of zinc endopeptidases that degrade extracellular matrix (ECM) proteins in cartilage. MMP-13, also known as collagenase 3, cleaves type II collagen more rapidly than other MMPs and therefore is an important target for the treatment of OA. The lipid peroxidation product 4-hydroxy-2-(E)-nonenal (HNE), generated under oxidative stress, is known to play a crucial role in cartilage degradation; however, the mechanism is not yet fully understood. An approach has been developed to monitor HNE modification sites by incubating rhMMP-13 ± HNE in vitro followed by analysis of tryptic digests by UHPLC coupled to high resolution (HR) quadrupole-time-of-flight (QqTOF) tandem mass spectrometry (MS/MS). The analysis elucidated several covalently modified histidine and cysteine residues. The reaction was monitored using different HNE concentrations and incubation times. A targeted assay, using multiple-reaction monitoring (MRM), was then optimized to increase the sensitivity of detecting these modification sites in biological samples. HNE-related covalent modifications of MMP-13 were confirmed in enriched extracts from interleukin 1ß-activated chondrocytes from OA patients using HR-MS/MS and MRM analysis.


Asunto(s)
Aldehídos/química , Metaloproteinasa 13 de la Matriz/química , Secuencia de Aminoácidos , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Inmunoprecipitación , Interleucina-1beta/farmacología , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Datos de Secuencia Molecular , Osteoartritis/metabolismo , Osteoartritis/patología , Péptidos/análisis , Péptidos/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometría de Masas en Tándem
7.
iScience ; 27(3): 109248, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433914

RESUMEN

Mesenchymal stromal cells (MSCs) have been modified via genetic or pharmacological engineering into potent antigen-presenting cells-like capable of priming responding CD8 T cells. In this study, our screening of a variant library of Accum molecule revealed a molecule (A1) capable of eliciting antigen cross-presentation properties in MSCs. A1-reprogrammed MSCs (ARM) exhibited improved soluble antigen uptake and processing. Our comprehensive analysis, encompassing cross-presentation assays and molecular profiling, among other cellular investigations, elucidated A1's impact on endosomal escape, reactive oxygen species production, and cytokine secretion. By evaluating ARM-based cellular vaccine in mouse models of lymphoma and melanoma, we observe significant therapeutic potency, particularly in allogeneic setting and in combination with anti-PD-1 immune checkpoint inhibitor. Overall, this study introduces a strong target for developing an antigen-adaptable vaccination platform, capable of synergizing with immune checkpoint blockers to trigger tumor regression, supporting further investigation of ARMs as an effective and versatile anti-cancer vaccine.

8.
Cells ; 11(15)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892560

RESUMEN

Mesenchymal stromal cells (MSCs) are largely known for their immune-suppressive capacity, hence, their common use in the control of unwanted inflammation. However, novel concepts related to their biology, combined with the urgent need to identify MSC subpopulations with enhanced suppressive properties, drive the search for isolation protocols optimized for clinical applications. We show, in this study, that MSCs expressing high CD146 levels exhibit altered surface expression profiles of CD44 and secrete elevated levels of interleukin (IL)-6, amongst other factors. In addition, CD146hi MSCs surpass the polyclonal parental populations in inhibiting alloreactive T cells in vitro, in both a soluble- and cell-contact-dependent manner. Despite the lack of CD146hi MSC-mediated activation of peritoneal macrophages to release the suppressive factor IL-10 in vitro, their administration in animals with graft-versus-host disease alleviates inflammation and leads to 40% survival rate up to 7 weeks post-transplantation. This pronounced inhibitory property is driven by CD146-mediated in situ efferocytosis by myeloid cells. Altogether, this study provides the impetus to adopt an isolation protocol for MSCs based on a CD146 expression profile before their therapeutic use and suggests a major role played by CD146 as a novel "eat-me" signal, capable of enhancing MSC uptake by competent phagocytes.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Antígeno CD146/metabolismo , Terapia de Inmunosupresión , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Linfocitos T/metabolismo
9.
Cells ; 11(4)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35203247

RESUMEN

The extensive use of mesenchymal stromal cells (MSCs) over the last decade has revolutionized modern medicine. From the delivery of pharmacological proteins to regenerative medicine and immune modulation, these cells have proven to be highly pleiotropic and responsive to their surrounding environment. Nevertheless, their role in promoting inflammation has been fairly limited by the questionable use of interferon-gamma, as this approach has also been proven to enhance the cells' immune-suppressive abilities. Alternatively, we have previously shown that de novo expression of the immunoproteasome (IPr) complex instills potent antigen cross-presentation capabilities in MSCs. Interestingly, these cells were found to express the major histocompatibility class (MHC) II protein, which prompted us to investigate their ability to stimulate humoral immunity. Using a series of in vivo studies, we found that administration of allogeneic ovalbumin (OVA)-pulsed MSC-IPr cells elicits a moderate antibody titer, which was further enhanced by the combined use of pro-inflammatory cytokines. The generated antibodies were functional as they blocked CD4 T-cell activation following their co-culture with OVA-pulsed MSC-IPr and mitigated E.G7 tumor growth in vivo. The therapeutic potency of MSC-IPr was, however, dependent on efferocytosis, as phagocyte depletion prior to vaccination abrogated MSC-IPr-induced humoral responses while promoting their survival in the host. In contrast, antibody-mediated neutralization of CD47, a potent "do not eat me signal", enhanced antibody titer levels. These observations highlight the major role played by myeloid cells in supporting antibody production by MSC-IPr and suggest that the immune outcome is dictated by a net balance between efferocytosis-stimulating and -inhibiting signals.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Presentación de Antígeno , Inmunidad Humoral , Células Madre Mesenquimatosas/metabolismo , Ovalbúmina , Fagocitos
10.
iScience ; 25(12): 105537, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36437872

RESUMEN

Immunoproteasome-reprogrammed mesenchymal stromal cells (IRMs) can surpass dendritic cells at eliciting tumor-specific immunity. However, the current IRM vaccination regimen remains clinically unsuitable due to the relatively high dose of IRMs needed. Since the administration of a lower IRM dose triggers a feeble anti-tumoral response, we aimed to combine this vaccination regimen with different modalities to fine-tune the potency of the vaccine. In a nutshell, we found that the co-administration of IRMs and interleukin-12 accentuates the anti-tumoral response, whereas the cross-presentation potency of IRMs is enhanced via intracellular succinate build-up, delayed endosomal maturation, and increased endosome-to-cytosol plasticity. Stimulating phagocyte-mediated cancer efferocytosis by blocking the CD47-SIRPα axis was also found to enhance IRM vaccine outcomes. Upon designing a single protocol combining the abovementioned strategies, 60% of treated animals exhibited a complete response. Altogether, this is the first IRM-based vaccination study, optimized to simultaneously target three vaccine-related pitfalls: T-cell response, antigen cross-presentation, and cancer phagocytosis.

11.
Cell Rep Med ; 3(3): 100534, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35492876

RESUMEN

The cross-presenting capacity of dendritic cells (DCs) can be limited by non-specific degradation during endosome maturation. To bypass this limitation, we present in this study a new Accum-based formulation designed to promote endosome-to-cytosol escape. Treatment of primary DCs with Accum linked to the xenoantigen ovalbumin (OVA) triggers endosomal damages and enhances protein processing. Despite multiple challenges using ascending doses of tumor cells, DC prophylactic vaccination results in complete protection due to increased levels of effector CD4 and CD8 T cells as well as high production of pro-inflammatory mediators. When combined with anti-PD-1, therapeutic vaccination using both syngeneic and allogeneic Accum-OVA-pulsed DCs triggers potent anti-tumoral responses. The net outcome culminates in increased CD11c, CD8, and NK infiltration along with a high CD8/Treg ratio. These highly favorable therapeutic effects highlight the promising potential of Accum as a distinct and potent technology platform suitable for the design of next generation cell cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer , Células Dendríticas , Deriva y Cambio Antigénico , Linfocitos T CD8-positivos , Endosomas , Ovalbúmina
12.
Mol Cancer Ther ; 20(1): 37-49, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33087510

RESUMEN

We report the discovery, via a unique high-throughput screening strategy, of a novel bioactive anticancer compound: Thiol Alkylating Compound Inducing Massive Apoptosis (TACIMA)-218. We demonstrate that this molecule engenders apoptotic cell death in genetically diverse murine and human cancer cell lines, irrespective of their p53 status, while sparing normal cells. TACIMA-218 causes oxidative stress in the absence of protective antioxidants normally induced by Nuclear factor erythroid 2-related factor 2 activation. As such, TACIMA-218 represses RNA translation and triggers cell signaling cascade alterations in AKT, p38, and JNK pathways. In addition, TACIMA-218 manifests thiol-alkylating properties resulting in the disruption of redox homeostasis along with key metabolic pathways. When administered to immunocompetent animals as a monotherapy, TACIMA-218 has no apparent toxicity and induces complete regression of pre-established lymphoma and melanoma tumors. In sum, TACIMA-218 is a potent oxidative stress inducer capable of selective cancer cell targeting.


Asunto(s)
Antineoplásicos/farmacología , Oxidantes/farmacología , Alquilación , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cromatina/metabolismo , Cisteína/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucólisis/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
13.
Cell Rep Med ; 2(12): 100455, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35028603

RESUMEN

Dendritic cells (DCs) excel at cross-presenting antigens, but their effectiveness as cancer vaccine is limited. Here, we describe a vaccination approach using mesenchymal stromal cells (MSCs) engineered to express the immunoproteasome complex (MSC-IPr). Such modification instills efficient antigen cross-presentation abilities associated with enhanced major histocompatibility complex class I and CD80 expression, de novo production of interleukin-12, and higher chemokine secretion. This cross-presentation capacity of MSC-IPr is highly dependent on their metabolic activity. Compared with DCs, MSC-IPr hold the ability to cross-present a vastly different epitope repertoire, which translates into potent re-activation of T cell immunity against EL4 and A20 lymphomas and B16 melanoma tumors. Moreover, therapeutic vaccination of mice with pre-established tumors efficiently controls cancer growth, an effect further enhanced when combined with antibodies targeting PD-1, CTLA4, LAG3, or 4-1BB under both autologous and allogeneic settings. Therefore, MSC-IPr constitute a promising subset of non-hematopoietic antigen-presenting cells suitable for designing universal cell-based cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Linfoma/inmunología , Melanoma Experimental/inmunología , Células Madre Mesenquimatosas/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Ingeniería de Proteínas , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Reprogramación Celular , Células Dendríticas/inmunología , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Fenotipo , Vacunación
14.
Front Cell Dev Biol ; 8: 72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133358

RESUMEN

Mesenchymal stem cells (MSCs) are competent suitors of cellular therapy due to their therapeutic impact on tissue degeneration and immune-based pathologies. Additionally, their homing and immunomodulatory properties can be exploited in cancer malignancies to transport pharmacological entities, produce anti-neoplastic agents, or induce anti-tumor immunity. Herein, we create a portfolio for MSC properties, showcasing their distinct multiple therapeutic utilities and successes/challenges thereof in both animal studies and clinical trials. We further highlight the promising potential of MSCs not only in cancer management but also in instigating tumor-specific immunity - i.e., cancer vaccination. Finally, we reflect on the possible reasons impeding the clinical advancement of MSC-based cancer vaccines to assist in contriving novel methodologies from which a therapeutic milestone might emanate.

15.
Front Immunol ; 11: 596303, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33542714

RESUMEN

Proteasomes are complex macromolecular structures existing in various forms to regulate a myriad of cellular processes. Besides degrading unwanted or misfolded proteins (proteostasis), distinct immune functions were ascribed for the immunoproteasome and thymoproteasome (TPr) complexes. For instance, antigen degradation during ongoing immune responses mainly relies on immunoproteasome activity, whereas intrathymic CD8 T-cell development requires peptide generation by the TPr complex. Despite these substantial differences, the functional contribution of the TPr to peripheral T-cell immunity remains ill-defined. We herein explored whether the use of mesenchymal stromal cells (MSCs) engineered to exhibit altered proteasomal activity through de novo expression of the TPr complex can be exploited as a novel anti-cancer vaccine capable of triggering potent CD8 T-cell activation. Phenotypic and molecular characterization of MSC-TPr revealed a substantial decrease in MHCI (H2-Kb and H2-Dd) expression along with elevated secretion of various chemokines (CCL2, CCL9, CXCL1, LIX, and CX3CL1). In parallel, transcriptomic analysis pinpointed the limited ability of MSC-TPr to present endogenous antigens, which is consistent with their low expression levels of the peptide-loading proteins TAP, CALR, and PDAI3. Nevertheless, MSC-TPr cross-presented peptides derived from captured soluble proteins. When tested for their protective capacity, MSC-TPr triggered modest anti-tumoral responses despite efficient generation of effector memory CD4 and CD8 T cells. In contrast, clodronate administration prior to vaccination dramatically enhanced the MSC-TPr-induced anti-tumoral immunity clearly highlighting a refractory role mediated by phagocytic cells. Thus, our data elute to a DC cross-priming-dependant pathway in mediating the therapeutic effect of MSC-TPr.


Asunto(s)
Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Citocinas/metabolismo , Mapeo Epitopo , Femenino , Ingeniería Genética , Humanos , Células Madre Mesenquimatosas/inmunología , Ratones , Modelos Biológicos , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Complejo de la Endopetidasa Proteasomal/inmunología
16.
Front Pharmacol ; 11: 237, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231565

RESUMEN

Phenotypic screening is an ideal strategy for the discovery of novel bioactive molecules. Using a customized high-throughput screening (HTS) assay employing primary T lymphocytes, we screened a small library of 4,398 compounds with unknown biological function/target to identify compounds eliciting immunomodulatory properties and discovered a sulfonyl-containing hit, we named InhiTinib. This compound inhibited interferon (IFN)-gamma production and proliferation of primary CD3+ T cells without inducing cell death. In contrast, InhiTinib triggered apoptosis in several murine and human cancer cell lines. Besides, the compound was well tolerated by immunocompetent mice, triggered tumor regression in animals with pre-established EL4 T-cell lymphomas, and prolonged the overall survival of mice harboring advanced tumors. Altogether, our data demonstrate the anti-cancer properties of InhiTinib, which can henceforth bridge to wider-scale biochemical and clinical tests following further in-depth pharmacodynamic studies.

17.
Arthritis Rheumatol ; 66(9): 2461-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24838404

RESUMEN

OBJECTIVE: To demonstrate the involvement of 4-hydroxynonenal (HNE), a very reactive aldehyde derived from lipid peroxidation, in the pathogenesis of osteoarthritis (OA) in vivo. METHODS: In the first experimental protocol, OA was induced by anterior cruciate ligament transection (ACLT) of the right knees of crossbred dogs (n = 6 per group). The animals were treated with placebo or HNE-trapping carnosine (5 or 20 mg/kg/day) orally for 8 weeks. Another group of dogs was treated for 4 weeks with 20 mg/kg/day of carnosine starting 4 weeks after surgery. Sham-operated dogs served as controls. In the second experimental protocol, a pathophysiologic dose of HNE (80 nmoles/ml) or vehicle was injected weekly into the right knee joints of crossbred dogs (n = 6 per group) for 8 weeks. Articular cartilage was subjected to macroscopic, histomorphologic, and immunohistochemical analyses. Cartilage-degrading enzymes and oxidative stress-related products were assessed in synovial fluid and cartilage explants. Markers of inflammation were evaluated in synovium and synovial fluid. RESULTS: In dogs that had undergone ACLT, carnosine treatment reduced the severity and histopathology score of OA cartilage lesions and also decreased HNE-protein adducts, pentosidine, nitrosylated proteins, cartilage-degrading enzymes, and markers of inflammation. Intraarticular injection of HNE induced cartilage lesions, as assessed by macroscopic and microscopic criteria. Cartilage-degrading enzymes and markers of inflammation increased in HNE-treated dogs. CONCLUSION: This is the first in vivo study to demonstrate the pathophysiologic role of HNE in OA. That carnosine abolishes HNE production and a number of factors known to be involved in OA pathogenesis renders it a clinically valuable agent in prevention of the disease.


Asunto(s)
Aldehídos/antagonistas & inhibidores , Artritis Experimental/etiología , Carnosina/uso terapéutico , Osteoartritis de la Rodilla/etiología , Aldehídos/metabolismo , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Carnosina/farmacología , Cartílago Articular/metabolismo , Perros , Articulación de la Rodilla/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/metabolismo
18.
Arthritis Res Ther ; 14(5): R223, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23079082

RESUMEN

INTRODUCTION: Recent studies revealed that co-morbidity and mortality due to cardiovascular disease are increased in patients with rheumatoid arthritis (RA) but little is known about factors involved in these manifestations. This study aimed at characterizing the impact of arthritis on oxidative stress status and tissue fibrosis in the heart of rats with adjuvant-induced arthritis (AIA). METHODS: AIA was induced with complete Freund's adjuvant in female Lewis rats. Animals were treated by oral administration of vehicle or angiotensin-converting enzyme inhibitor ramipril (10 mg/kg/day) for 28 days, beginning 1 day after arthritis induction. Isolated adult cardiomyocytes were exposed to 10 µM 4-hydroxynonenal (HNE) for 24 hours in the presence or absence of 10 µM ramipril. RESULTS: Compared to controls, AIA rats showed significant 55 and 30% increase of 4-HNE/protein adducts in serum and left ventricular (LV) tissues, respectively. Cardiac mitochondrial NADP+-isocitrate dehydrogenase (mNADP-ICDH) activity decreased by 25% in AIA rats without any changes in its protein and mRNA expression. The loss of mNADP-ICDH activity was correlated with enhanced accumulation of HNE/mNADP-ICDH adducts as well as with decrease of glutathione and NADPH. Angiotensin II type 1 receptor (AT1R) expression and tissue fibrosis were induced in LV tissues from AIA rats. In isolated cardiomyocytes, HNE significantly decreased mNADP-ICDH activity and enhanced type I collagen and connective tissue growth factor expression. The oral administration of ramipril significantly reduced HNE and AT1R levels and restored mNADP-ICDH activity and redox status in LV tissues of AIA rats. The protective effects of this drug were also evident from the decrease in arthritis scoring and inflammatory markers. CONCLUSION: Collectively, our findings disclosed that AIA induced oxidative stress and fibrosis in the heart. The fact that ramipril attenuates inflammation, oxidative stress and tissue fibrosis may provide a novel strategy to prevent heart diseases in RA.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Peroxidación de Lípido/efectos de los fármacos , Miocardio/patología , Ramipril/farmacología , Ramipril/uso terapéutico , Aldehídos/metabolismo , Aldehídos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Células Cultivadas , Dinoprostona/sangre , Modelos Animales de Enfermedad , Femenino , Fibrosis/prevención & control , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Endogámicas Lew , Factor de Necrosis Tumoral alfa/sangre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda