Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 23(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37766004

RESUMEN

Post-stroke depression and anxiety, collectively known as post-stroke adverse mental outcome (PSAMO) are common sequelae of stroke. About 30% of stroke survivors develop depression and about 20% develop anxiety. Stroke survivors with PSAMO have poorer health outcomes with higher mortality and greater functional disability. In this study, we aimed to develop a machine learning (ML) model to predict the risk of PSAMO. We retrospectively studied 1780 patients with stroke who were divided into PSAMO vs. no PSAMO groups based on results of validated depression and anxiety questionnaires. The features collected included demographic and sociological data, quality of life scores, stroke-related information, medical and medication history, and comorbidities. Recursive feature elimination was used to select features to input in parallel to eight ML algorithms to train and test the model. Bayesian optimization was used for hyperparameter tuning. Shapley additive explanations (SHAP), an explainable AI (XAI) method, was applied to interpret the model. The best performing ML algorithm was gradient-boosted tree, which attained 74.7% binary classification accuracy. Feature importance calculated by SHAP produced a list of ranked important features that contributed to the prediction, which were consistent with findings of prior clinical studies. Some of these factors were modifiable, and potentially amenable to intervention at early stages of stroke to reduce the incidence of PSAMO.


Asunto(s)
Calidad de Vida , Accidente Cerebrovascular , Humanos , Teorema de Bayes , Estudios Retrospectivos , Accidente Cerebrovascular/epidemiología , Aprendizaje Automático
2.
Cogn Neurodyn ; : 1-22, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36467993

RESUMEN

Epidemiological studies report high levels of anxiety and depression amongst adolescents. These psychiatric conditions and complex interplays of biological, social and environmental factors are important risk factors for suicidal behaviours and suicide, which show a peak in late adolescence and early adulthood. Although deaths by suicide have fallen globally in recent years, suicide deaths are increasing in some countries, such as the US. Suicide prevention is a challenging global public health problem. Currently, there aren't any validated clinical biomarkers for suicidal diagnosis, and traditional methods exhibit limitations. Artificial intelligence (AI) is budding in many fields, including in the diagnosis of medical conditions. This review paper summarizes recent studies (past 8 years) that employed AI tools for the automated detection of depression and/or anxiety disorder and discusses the limitations and effects of some modalities. The studies assert that AI tools produce promising results and could overcome the limitations of traditional diagnostic methods. Although using AI tools for suicidal ideation exhibits limitations, these are outweighed by the advantages. Thus, this review article also proposes extracting a fusion of features such as facial images, speech signals, and visual and clinical history features from deep models for the automated detection of depression and/or anxiety disorder in individuals, for future work. This may pave the way for the identification of individuals with suicidal thoughts.

3.
Artículo en Inglés | MEDLINE | ID: mdl-34072232

RESUMEN

A variety of screening approaches have been proposed to diagnose epileptic seizures, using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities. Artificial intelligence encompasses a variety of areas, and one of its branches is deep learning (DL). Before the rise of DL, conventional machine learning algorithms involving feature extraction were performed. This limited their performance to the ability of those handcrafting the features. However, in DL, the extraction of features and classification are entirely automated. The advent of these techniques in many areas of medicine, such as in the diagnosis of epileptic seizures, has made significant advances. In this study, a comprehensive overview of works focused on automated epileptic seizure detection using DL techniques and neuroimaging modalities is presented. Various methods proposed to diagnose epileptic seizures automatically using EEG and MRI modalities are described. In addition, rehabilitation systems developed for epileptic seizures using DL have been analyzed, and a summary is provided. The rehabilitation tools include cloud computing techniques and hardware required for implementation of DL algorithms. The important challenges in accurate detection of automated epileptic seizures using DL with EEG and MRI modalities are discussed. The advantages and limitations in employing DL-based techniques for epileptic seizures diagnosis are presented. Finally, the most promising DL models proposed and possible future works on automated epileptic seizure detection are delineated.


Asunto(s)
Aprendizaje Profundo , Epilepsia , Algoritmos , Inteligencia Artificial , Electroencefalografía , Epilepsia/diagnóstico , Humanos , Convulsiones/diagnóstico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda