Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biomedicines ; 11(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37239047

RESUMEN

Ticks are hematophagous ectoparasites of economic consequence by virtue of being carriers of infectious diseases that affect livestock and other sectors of the agricultural industry. A widely prevalent tick species, Rhipicephalus (Boophilus) annulatus, has been recognized as a prime vector of tick-borne diseases in South Indian regions. Over time, the use of chemical acaricides for tick control has promoted the evolution of resistance to these widely used compounds through metabolic detoxification. Identifying the genes related to this detoxification is extremely important, as it could help detect valid insecticide targets and develop novel strategies for effective insect control. We performed an RNA-sequencing analysis of acaricide-treated and untreated R. (B.) annulatus and mapped the detoxification genes expressed due to acaricide exposure. Our results provided high-quality RNA-sequenced data of untreated and amitraz-treated R. (B.) annulatus, and then the data were assembled into contigs and clustered into 50,591 and 71,711 uni-gene sequences, respectively. The expression levels of the detoxification genes across different developmental stages of R. (B.) annulatu identified 16,635 transcripts as upregulated and 15,539 transcripts as downregulated. The annotations of the differentially expressed genes (DEGs) revealed the significant expression of 70 detoxification genes in response to the amitraz treatment. The qRT-PCR revealed significant differences in the gene expression levels across different life stages of R. (B.) annulatus.

2.
Microbiol Spectr ; : e0233722, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715509

RESUMEN

Peroxisome proliferator activated receptor (PPAR) agonists are commonly used to treat metabolic disorders in humans because they regulate fatty acid oxidation and cholesterol metabolism. In addition to their roles in controlling metabolism, PPAR agonists also regulate inflammation and are immunosuppressive in models of autoimmunity. We aimed to test whether activation of PPARα with clinically relevant ligands could impact gammaherpesvirus infection using murine gammaherpesvirus-68 (MHV68, MuHV-4). We found that PPAR agonists WY14643 and fenofibrate increased herpesvirus replication in vitro. In vivo, WY14643 increased viral replication and caused lethality in mice. Unexpectedly, these effects proved independent of PPARα. We found that WY14643 suppressed production of type I interferon after MHV68 infection in vitro and in vivo. Taken together, our data indicate that caution should be employed when using PPARα agonists in immuno-metabolic studies, as they can have off-target effects on viral replication through the inhibition of type I interferon production. IMPORTANCE PPAR agonists are used clinically to treat both metabolic and inflammatory disorders. Because viruses are known to rewire host metabolism to their own benefit, the intersection of immunity, metabolism, and virology is an important research area. Our article is an important contribution to this field for two reasons. First, it shows a role for PPARα agonists in altering virus replication. Second, it shows that PPARα agonists can affect virus replication in a manner independent of their predicted target. This knowledge is valuable for anyone seeking to use PPARα agonists as a research tool.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda