Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Psychol Med ; 54(2): 289-298, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37226550

RESUMEN

BACKGROUND: Major depression is associated with changes in plasma L-carnitine and acetyl-L-carnitine. But its association with acylcarnitines remains unclear. The aim of this study was to assess metabolomic profiles of 38 acylcarnitines in patients with major depression before and after treatment compared to healthy controls (HCs). METHODS: Metabolomic profiles of 38 plasma short-, medium-, and long-chain acylcarnitines were performed by liquid chromatography-mass spectrometry in 893 HCs from the VARIETE cohort and 460 depressed patients from the METADAP cohort before and after 6 months of antidepressant treatment. RESULTS: As compared to HCs, depressed patients had lower levels of medium- and long-chain acylcarnitines. After 6 months of treatment, increased levels of medium- and long-chain acyl-carnitines were observed that no longer differed from those of controls. Accordingly, several medium- and long-chain acylcarnitines were negatively correlated with depression severity. CONCLUSIONS: These medium- and long-chain acylcarnitine dysregulations argue for mitochondrial dysfunction through fatty acid ß-oxidation impairment during major depression.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Carnitina , Metabolómica , Antidepresivos
2.
J Inherit Metab Dis ; 47(2): 255-269, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012812

RESUMEN

Glycogen storage disease type IV (GSD IV), also called Andersen disease, or amylopectinosis, is a highly heterogeneous autosomal recessive disorder caused by a glycogen branching enzyme (GBE, 1,4-alpha-glucan branching enzyme) deficiency secondary to pathogenic variants on GBE1 gene. The incidence is evaluated to 1:600 000 to 1:800 000 of live births. GBE deficiency leads to an excessive deposition of structurally abnormal, amylopectin-like glycogen in affected tissues (liver, skeletal muscle, heart, nervous system, etc.). Diagnosis is often guided by histological findings and confirmed by GBE activity deficiency and molecular studies. Severe neuromuscular forms of GSD IV are very rare and of disastrous prognosis. Identification and characterization of these forms are important for genetic counseling for further pregnancies. Here we describe clinical, histological, enzymatic, and molecular findings of 10 cases from 8 families, the largest case series reported so far, of severe neuromuscular forms of GSD IV along with a literature review. Main antenatal features are: fetal akinesia deformation sequence or arthrogryposis/joint contractures often associated with muscle atrophy, decreased fetal movement, cystic hygroma, and/or hydrops fetalis. If pregnancy is carried to term, the main clinical features observed at birth are severe hypotonia and/or muscle atrophy, with the need for mechanical ventilation, cardiomyopathy, retrognathism, and arthrogryposis. All our patients were stillborn or died within 1 month of life. In addition, we identified five novel GBE1 variants.


Asunto(s)
Artrogriposis , Enfermedad del Almacenamiento de Glucógeno Tipo IV , Enfermedad del Almacenamiento de Glucógeno , Recién Nacido , Humanos , Femenino , Embarazo , Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/patología , Artrogriposis/complicaciones , Artrogriposis/patología , Glucógeno , Músculo Esquelético/patología , Atrofia Muscular/complicaciones , Atrofia Muscular/patología , Enfermedad del Almacenamiento de Glucógeno/complicaciones
3.
Pediatr Nephrol ; 39(7): 2079-2082, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38261066

RESUMEN

BACKGROUND: Lumasiran is the first RNA interference (RNAi) therapy of primary hyperoxaluria type 1 (PH1). Here, we report on the rapid improvement and even disappearance of nephrocalcinosis after early lumasiran therapy. CASE-DIAGNOSIS/TREATMENT: In patient 1, PH1 was suspected due to incidental discovery of nephrocalcinosis stage 3 in a 4-month-old boy. Bilateral nephrocalcinosis stage 3 was diagnosed in patient 2 at 22 months concomitantly to acute pyelonephritis. Urinary oxalate (UOx) and glycolate (UGly) were increased in both patients allowing to start lumasiran therapy before genetic confirmation. Nephrocalcinosis started to improve and disappeared after 27 months and 1 year of treatment in patients 1 and 2, respectively. CONCLUSION: These cases illustrate the efficacy of early lumasiran therapy in infants to improve and even normalize nephrocalcinosis. As proposed in the 2023 European guidelines, the interest of starting treatment quickly without waiting for genetic confirmation may have an impact on long-term outcomes.


Asunto(s)
Hiperoxaluria Primaria , Nefrocalcinosis , Humanos , Nefrocalcinosis/genética , Nefrocalcinosis/diagnóstico , Nefrocalcinosis/terapia , Masculino , Lactante , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/terapia , Hiperoxaluria Primaria/orina , Hiperoxaluria Primaria/complicaciones , Tratamiento con ARN de Interferencia/métodos , Resultado del Tratamiento , Glicolatos/uso terapéutico , Glicolatos/orina
4.
Psychol Med ; 53(6): 2307-2316, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35115069

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is the main cause of disability worldwide, its outcome is poor, and its underlying mechanisms deserve a better understanding. Recently, peripheral acetyl-l-carnitine (ALC) has been shown to be lower in patients with major depressive episodes (MDEs) than in controls. l-Carnitine is involved in mitochondrial function and ALC is its short-chain acetyl-ester. Our first aim was to compare the plasma levels of l-carnitine and ALC, and the l-carnitine/ALC ratio in patients with a current MDE and healthy controls (HCs). Our second aim was to assess their changes after antidepressant treatment. METHODS: l-Carnitine and ALC levels and the carnitine/ALC ratio were measured in 460 patients with an MDE in a context of MDD and in 893 HCs. Depressed patients were re-assessed after 3 and 6 months of antidepressant treatment for biology and clinical outcome. RESULTS: As compared to HC, depressed patients had lower ALC levels (p < 0.00001), higher l-carnitine levels (p < 0.00001) and higher l-carnitine/ALC ratios (p < 0.00001). ALC levels increased [coefficient: 0.18; 95% confidence interval (CI) 0.12-0.24; p < 0.00001], and l-carnitine levels (coefficient: -0.58; 95% CI -0.75 to -0.41; p < 0.00001) and l-carnitine/ALC ratios (coefficient: -0.41; 95% CI -0.47 to -0.34; p < 0.00001), decreased after treatment. These parameters were completely restored after 6 months of antidepressant. Moreover, the baseline l-carnitine/ALC ratio predicted remission after 3 months of treatment (odds ratio = 1.14; 95% CI 1.03-1.27; p = 0.015). CONCLUSIONS: Our data suggest a decreased mitochondrial metabolism of l-carnitine into ALC during MDE. This decreased mitochondrial metabolism is restored after a 6-month antidepressant treatment. Moreover, the magnitude of mitochondrial dysfunction may predict remission after 3 months of antidepressant treatment. New strategies targeting mitochondria should be explored to improve treatments of MDD.


Asunto(s)
Acetilcarnitina , Trastorno Depresivo Mayor , Humanos , Acetilcarnitina/uso terapéutico , Carnitina , Trastorno Depresivo Mayor/tratamiento farmacológico , Estudios de Casos y Controles , Antidepresivos/uso terapéutico
5.
BMC Med ; 20(1): 95, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35341481

RESUMEN

BACKGROUND: Thymidine phosphorylase (TP), encoded by the TYMP gene, is a cytosolic enzyme essential for the nucleotide salvage pathway. TP catalyzes the phosphorylation of the deoxyribonucleosides, thymidine and 2'-deoxyuridine, to thymine and uracil. Biallelic TYMP variants are responsible for Mitochondrial NeuroGastroIntestinal Encephalomyopathy (MNGIE), an autosomal recessive disorder characterized in most patients by gastrointestinal and neurological symptoms, ultimately leading to death. Studies on the impact of TYMP variants in cellular systems with relevance to the organs affected in MNGIE are still scarce and the role of TP in adipose tissue remains unexplored. METHODS: Deep phenotyping was performed in three patients from two families carrying homozygous TYMP variants and presenting with lipoatrophic diabetes. The impact of the loss of TP expression was evaluated using a CRISPR-Cas9-mediated TP knockout (KO) strategy in human adipose stem cells (ASC), which can be differentiated into adipocytes in vitro. Protein expression profiles and cellular characteristics were investigated in this KO model. RESULTS: All patients had TYMP loss-of-function variants and first presented with generalized loss of adipose tissue and insulin-resistant diabetes. CRISPR-Cas9-mediated TP KO in ASC abolished adipocyte differentiation and decreased insulin response, consistent with the patients' phenotype. This KO also induced major oxidative stress, altered mitochondrial functions, and promoted cellular senescence. This translational study identifies a new role of TP by demonstrating its key regulatory functions in adipose tissue. CONCLUSIONS: The implication of TP variants in atypical forms of monogenic diabetes shows that genetic diagnosis of lipodystrophic syndromes should include TYMP analysis. The fact that TP is crucial for adipocyte differentiation and function through the control of mitochondrial homeostasis highlights the importance of mitochondria in adipose tissue biology.


Asunto(s)
Diabetes Mellitus Lipoatrófica , Insulinas , Adipocitos/metabolismo , Humanos , Insulinas/genética , Mutación , Timidina Fosforilasa/genética , Timidina Fosforilasa/metabolismo
6.
Pediatr Nephrol ; 37(4): 907-911, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35015123

RESUMEN

BACKGROUND: Lumasiran, a sub-cutaneous RNA-interference therapy, has been recently approved for primary hyperoxaluria type 1 (PH1), with doses and intervals according to body weight. Little is known as to its use in infants; the aim of this study was to describe treatment outcome in 3 infants who received lumasiran therapy before 2 years of age. CASE-DIAGNOSIS/TREATMENT: Patient 1 was diagnosed antenatally and received lumasiran from day 9. According to the product information template (PIT), he received monthly lumasiran (3 times at 6 mg/kg, then 3 mg/kg), with hyperhydration and potassium citrate. Despite decreased plasma oxalate levels, persistent normal kidney function, and good tolerance, kidney ultrasound performed after 2 months found nephrocalcinosis, without normalization of urinary oxalate (UOx). The dose was increased back to 6 mg/kg, inducing a normalization in UOx. Nephrocalcinosis started to improve at month 10. Patient 2 was diagnosed at 2.5 months (acute kidney failure); nephrocalcinosis was present from diagnosis. She received monthly lumasiran (6 mg/kg), with progressive decrease in UOx and substantial improvement in kidney function but stable nephrocalcinosis after 9 injections. Patient 3 was diagnosed fortuitously (nephrocalcinosis) at 3.5 months and received lumasiran before genetic diagnosis, leading to decreased UOx and maintenance of normal kidney function. Nephrocalcinosis improved after 5 injections. CONCLUSIONS: This report presents the youngest children treated with lumasiran worldwide. Lumasiran seems effective without side effects in infants but does not completely prevent the onset of nephrocalcinosis in the most severe forms. Higher doses than those proposed in the PIT might be required because of hepatic immaturity.


Asunto(s)
Hiperoxaluria Primaria , Nefrocalcinosis , Femenino , Humanos , Hiperoxaluria Primaria/complicaciones , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/tratamiento farmacológico , Lactante , Masculino , Nefrocalcinosis/tratamiento farmacológico , Nefrocalcinosis/etiología , Oxalatos , ARN Interferente Pequeño
7.
Pediatr Nephrol ; 36(3): 581-589, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32901297

RESUMEN

INTRODUCTION: In nephropathic cystinosis (NC), adherence to cysteamine remains challenging; poor adherence is worsening the disease progression with a decline of kidney function and increase of extrarenal morbidities. Our objective was to describe adherence to cysteamine in NC patients, using electronic monitoring systems. METHODS: Patients with confirmed NC, aged > 4 years and receiving oral cysteamine (short acting or delayed release formulation as standard of care) from 3 French reference centers, were included. Adherence to treatment was primarily assessed as the percentage of days with a good adherence score, adherence score rating from 0 (poor) to 2 (good). A descriptive analysis was performed after 1-year follow-up. RESULTS: Seventeen patients (10 girls, median age: 13.9 (5.4-33.0) years) were included. Median age at diagnosis was 17.0 (3.0-76.9) months and age at start of cysteamine was 21.0 (15.5-116.3) months. Median daily dose of cysteamine was 1.05 (0.55-1.63) g/m2/day. Over the year, the median percentage of days with a good adherence score was 80 (1-99)% decreasing to 68 (1-99)% in patients > 11 years old. The median of average number of hours covered by treatment in a day was 22.5 (6.1-23.9) versus 14.9 (9.2-20.5) hours for delayed release versus short acting cysteamine. CONCLUSION: Our data are the first describing a rather good adherence to cysteamine, decreasing in adolescents and adults. We described a potential interest of the delayed release formulation. Our data highlight the need for a multidisciplinary approach including therapeutic education and individualized approaches in NC patients transitioning to adulthood. Graphical abstract.


Asunto(s)
Cistinosis , Síndrome de Fanconi , Adolescente , Adulto , Niño , Preescolar , Cisteamina/uso terapéutico , Cistinosis/tratamiento farmacológico , Electrónica , Femenino , Humanos , Masculino , Estudios Prospectivos , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-33087424

RESUMEN

OBJECTIVE: Riboflavin transporter deficiencies (RTDs), involving SLC52A3 and SLC52A2 genes, have recently been related to Brown-Vialetto-Van Laere (BVVL) syndrome, a hereditary paediatric condition associating motor neuropathy (MN) and deafness. BVVL/RTD has rarely been reported in adult patients, but is probably underdiagnosed due to poor knowledge and lack of awareness of this form of disease among neurologists. In this study, we aimed to investigate the phenotype and prognosis of RTD patients with late-onset MN. METHODS: We retrospectively collected clinical, biological and electrophysiological data from all French RTD patients with MN onset after 10 years of age (n=6) and extracted data from 19 other similar RTD patients from the literature. RESULTS: Adult RTD patients with MN had heterogeneous clinical presentations, potentially mimicking amyotrophic lateral sclerosis or distal hereditary motor neuropathy (56%), multinevritis with cranial nerve involvement (16%), Guillain-Barré syndrome (8%) and mixed motor and sensory neuronopathy syndromes (20%, only in SLC52A2 patients). Deafness was often diagnosed before MN (in 44%), but in some patients, onset began only with MN (16%). The pattern of weakness varied widely, and the classic pontobulbar palsy described in BVVL was not constant. Biochemical tests were often normal. The majority of patients improved under riboflavin supplementation (86%). INTERPRETATION: Whereas late-onset RTD may mimic different acquired or genetic causes of motor neuropathies, it is a diagnosis not to be missed since high-dose riboflavin per oral supplementation is often highly efficient.

9.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354056

RESUMEN

Patients with chronic kidney disease (CKD) display significant mineral and bone disorders (CKD-MBD) that induce significant cardiovascular, growth and bone comorbidities. Nephropathic cystinosis is an inherited metabolic disorder caused by the lysosomal accumulation of cystine due to mutations in the CTNS gene encoding cystinosin, and leads to end-stage renal disease within the second decade. The cornerstone of management relies on cysteamine therapy to decrease lysosomal cystine accumulation in target organs. However, despite cysteamine therapy, patients display severe bone symptoms, and the concept of "cystinosis metabolic bone disease" is currently emerging. Even though its exact pathophysiology remains unclear, at least five distinct but complementary entities can explain bone impairment in addition to CKD-MBD: long-term consequences of renal Fanconi syndrome, malnutrition and copper deficiency, hormonal disturbances, myopathy, and intrinsic/iatrogenic bone defects. Direct effects of both CTNS mutation and cysteamine on osteoblasts and osteoclasts are described. Thus, the main objective of this manuscript is not only to provide a clinical update on bone disease in cystinosis, but also to summarize the current experimental evidence demonstrating a functional impairment of bone cells in this disease and to discuss new working hypotheses that deserve future research in the field.


Asunto(s)
Enfermedades Óseas/etiología , Cisteamina/uso terapéutico , Cistinosis/tratamiento farmacológico , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Remodelación Ósea , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/etiología , Cistinosis/complicaciones , Cistinosis/genética , Humanos , Mutación
10.
Hum Mutat ; 40(10): 1826-1840, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31116475

RESUMEN

Mutations in genes encoding aminoacyl-tRNA synthetases have been reported in several neurological disorders. KARS is a dual localized lysyl-tRNA synthetase and its cytosolic isoform belongs to the multiple aminoacyl-tRNA synthetase complex (MSC). Biallelic mutations in the KARS gene were described in a wide phenotypic spectrum ranging from nonsyndromic deafness to complex impairments. Here, we report on a patient with severe neurological and neurosensory disease investigated by whole-exome sequencing and found to carry biallelic mutations c.683C>T (p.Pro228Leu) and c.871T>G (p.Phe291Val), the second one being novel, in the KARS gene. The patient presented with an atypical clinical presentation with an optic neuropathy not previously reported. At the cellular level, we show that cytoplasmic KARS was expressed at a lower level in patient cells and displayed decreased interaction with MSC. In vitro, these two KARS variants have a decreased aminoacylation activity compared with wild-type KARS, the p.Pro228Leu being the most affected. Our data suggest that dysfunction of cytoplasmic KARS resulted in a decreased level of translation of the nuclear-encoded lysine-rich proteins belonging to the respiratory chain complex, thus impairing mitochondria functions.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Lisina-ARNt Ligasa/genética , Mutación , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/genética , Enfermedades del Nervio Óptico/complicaciones , Trastornos de la Sensación/complicaciones , Trastornos de la Sensación/genética , Alelos , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/metabolismo , Imagen por Resonancia Magnética , Modelos Moleculares , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Nervio Óptico/diagnóstico , Linaje , Unión Proteica , Conformación Proteica , Trastornos de la Sensación/diagnóstico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3294-3302, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28888424

RESUMEN

MRPP2 (also known as HSD10/SDR5C1) is a multifunctional protein that harbours both catalytic and non-catalytic functions. The protein belongs to the short-chain dehydrogenase/reductases (SDR) family and is involved in the catabolism of isoleucine in vivo and steroid metabolism in vitro. MRPP2 also moonlights in a complex with the MRPP1 (also known as TRMT10C) protein for N1-methylation of purines at position 9 of mitochondrial tRNA, and in a complex with MRPP1 and MRPP3 (also known as PRORP) proteins for 5'-end processing of mitochondrial precursor tRNA. Inherited mutations in the HSD17B10 gene encoding MRPP2 protein lead to a childhood disorder characterised by progressive neurodegeneration, cardiomyopathy or both. Here we report two patients with novel missense mutations in the HSD17B10 gene (c.34G>C and c.526G>A), resulting in the p.V12L and p.V176M substitutions. Val12 and Val176 are highly conserved residues located at different regions of the MRPP2 structure. Recombinant mutant proteins were expressed and characterised biochemically to investigate their effects towards the functions of MRPP2 and associated complexes in vitro. Both mutant proteins showed significant reduction in the dehydrogenase, methyltransferase and tRNA processing activities compared to wildtype, associated with reduced stability for protein with p.V12L, whereas the protein carrying p.V176M showed impaired kinetics and complex formation. This study therefore identified two distinctive molecular mechanisms to explain the biochemical defects for the novel missense patient mutations.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/genética , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Mitocondrias/metabolismo , ARN de Transferencia/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/química , Femenino , Expresión Génica , Humanos , Lactante , Masculino , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Mutación Missense , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasa P/genética , Ribonucleasa P/metabolismo
14.
Mol Genet Metab ; 121(2): 111-118, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28396157

RESUMEN

BACKGROUND: 3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG-CoA) lyase deficiency is a rare inborn error of leucine metabolism and ketogenesis. Despite recurrent hypoglycemia and metabolic decompensations, most patients have a good clinical and neurological outcome contrasting with abnormal brain magnetic resonance imaging (MRI) signals and consistent abnormal brain proton magnetic resonance spectroscopy (1H-MRS) metabolite peaks. Identifying these metabolites could provide surrogate markers of the disease and improve understanding of MRI-clinical discrepancy and follow-up of affected patients. METHODS: Urine samples, brain MRI and 1H-MRS in 5 patients with HMG-CoA lyase deficiency (4 boys and 1 girl aged from 25days to 10years) were, for each patient, obtained on the same day. Brain and urine spectroscopy were performed at the same pH by studying urine at pH 7.4. Due to pH-induced modifications in chemical shifts and because reference 1H NMR spectra are obtained at pH 2.5, spectroscopy of normal urine added with the suspected metabolite was further performed at this pH to validate the correct identification of compounds. RESULTS: Mild to extended abnormal white matter MRI signals were observed in all cases. Brain spectroscopy abnormal peaks at 0.8-1.1ppm, 1.2-1.4ppm and 2.4ppm were also detected by urine spectroscopy at pH 7.4. Taking into account pH-induced changes in chemical shifts, brain abnormal peaks in patients were formally identified to be those of 3-hydroxyisovaleric, 3-methylglutaconic, 3-methylglutaric and 3-hydroxy-3-methylglutaric acids. CONCLUSION: 3-Methylglutaric, 3-hydroxyisovaleric and 3-hydroxy-3-methylglutaric acids identified on urine 1H-NMR spectra of 5 patients with HMG-CoA lyase deficiency are responsible for the cerebral spectroscopy signature seen in these patients, validating their local involvement in brain and putative contribution to brain neuropathology.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/orina , Química Encefálica , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Meglutol/orina , Metabolómica/métodos , Acetil-CoA C-Acetiltransferasa/química , Acetil-CoA C-Acetiltransferasa/metabolismo , Acetil-CoA C-Acetiltransferasa/orina , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico por imagen , Cerebelo/metabolismo , Niño , Preescolar , Femenino , Humanos , Concentración de Iones de Hidrógeno , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Meglutol/análogos & derivados , Meglutol/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Orina/química , Valeratos/metabolismo , Sustancia Blanca/metabolismo
15.
J Inherit Metab Dis ; 40(3): 415-422, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28255778

RESUMEN

BACKGROUND: Mitochondrial acetoacetyl-CoA thiolase (T2) deficiency affects ketone body and isoleucine catabolism. Neurological impairment may occur secondary to ketoacidotic episodes. However, we observed neuromotor abnormalities without ketoacidotic events in two T2-deficient families. We hypothesized that the neurological signs were related to the genetic defect and may occur independently of ketoacidotic episodes. We therefore conducted a retrospective review on a French T2-deficient patient series searching for neuromotor impairment. METHODS: In total, 26 cases were retrospectively analysed for clinical, biological and neuroimaging data. RESULTS: Neurological findings were observed for 6/26 (23%) patients. Among these, two had never experienced ketoacidotic episodes, though they developed extrapyramidal signs with putamen involvement. Two of the other four patients developed neurological abnormalities before the first ketoacidotic crisis, with putamen involvement in one case. The third patient developed extrapyramidal symptoms more than 10 years after the initial decompensation with globus pallidus involvement. The last patient developed extrapyramidal signs immediately after a severe ketoacidotic crisis with putaminal lesions. CONCLUSIONS: Most T2-deficient patients achieved normal neurodevelopment. However, on account of the role of T2 in isoleucine catabolism, these patients are potentially exposed to accumulation of toxic isoleucine-derived metabolites, which may contribute to neurological impairment. Our findings confirm previous observations that neurological symptoms in T2 deficiency may occur unrelated to ketoacidosis. The role of protein restriction as a preventive measure against neurological symptoms could not be established in this study and deserves further evaluation. Long-term follow-up data on children diagnosed by newborn screening may clarify the pathogenesis of this neurometabolic association.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/deficiencia , Acetil-CoA C-Aciltransferasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Ganglios Basales/metabolismo , Cetosis/metabolismo , Mitocondrias/metabolismo , Acetil-CoA C-Aciltransferasa/metabolismo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Isoleucina/metabolismo , Cuerpos Cetónicos/metabolismo , Masculino , Tamizaje Neonatal/métodos , Estudios Retrospectivos , Adulto Joven
16.
Pediatr Nephrol ; 30(10): 1807-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25972204

RESUMEN

BACKGROUND: Primary hyperoxaluria type 3 (PH3) is characterized by mutations in the 4-hydroxy-2-oxoglutarate aldolase (HOGA1) gene. PH3 patients are believed to present with a less severe phenotype than those with PH1 and PH2, but the clinical characteristics of PH3 patients have yet to be defined in sufficient detail. The aim of this study was to report our experience with PH3. METHODS: Genetic analysis of HOGA1 was performed in patients with a high clinical suspicion of PH after the presence of mutations in the alanine-glyoxylate aminotransferase gene had been ruled out. Clinical, biochemical and genetic data of the seven patients identified with HOGA1 mutations were subsequently retrospectively reviewed. RESULTS: Among the seven patients identified with HOGA1 mutations the median onset of clinical symptoms was 1.8 (range 0.4-9.8) years. Five patients initially presented with urolithiasis, and two other patients presented with urinary tract infection. All patients experienced persistent hyperoxaluria. Seven mutations were found in HOGA1, including two previously unreported ones, c.834 + 1G > T and c.3G > A. At last follow-up, two patients had impaired renal function based on estimated glomerular filtration rates (GFRs) of 77 and 83 mL/min per 1.73 m(2), respectively. CONCLUSIONS: We found that the GFR was significantly impaired in two of our seven patients with PH3 diagnosed during childhood. This finding is in contrast to the early-impaired renal function in PH1 and PH2 and appears to refute to preliminary reassuring data on renal function in PH3.


Asunto(s)
ADN/genética , Tasa de Filtración Glomerular/fisiología , Hiperoxaluria Primaria/genética , Riñón/fisiopatología , Mutación , Oxo-Ácido-Liasas/genética , Niño , Preescolar , Femenino , Estudios de Seguimiento , Pruebas Genéticas , Humanos , Hiperoxaluria Primaria/metabolismo , Hiperoxaluria Primaria/fisiopatología , Lactante , Recién Nacido , Masculino , Oxo-Ácido-Liasas/metabolismo , Estudios Retrospectivos
18.
Kidney Int ; 86(6): 1197-204, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24988064

RESUMEN

Primary hyperoxaluria type 1 displays a heterogeneous phenotype, likely to be affected by genetic and non-genetic factors, including timeliness of diagnosis and quality of care. As previous genotype-phenotype studies were hampered by limited patient numbers the European OxalEurope Consortium was constituted. This preliminary retrospective report is based on 526 patients of which 410 have the AGXT genotype defined. We grouped mutations by the predicted effect as null, missense leading to mistargeting (G170R), and other missense, and analyzed their phenotypic correlations. Median age of end-stage renal disease increased from 9.9 for 88 homozygous null patients, 11.5 for 42 heterozygous null/missense, 16.9 for 116 homozygous missense patients, 25.1 for 61 G170R/null patients, 31.2 for 32 G170R/missense patients, and 33.9 years for 71 homozygous G170R patients. The outcome of some recurrent missense mutations (p.I244T, p.F152I, p.M195R, p.D201E, p.S81L, p.R36C) and an unprecedented number of G170R homozygotes is described in detail. Diagnosis is still delayed and actions aimed at increasing awareness of primary hyperoxaluria type 1 are recommended. Thus, in addition to G170R, other causative mutations are associated with later onset of end-stage renal disease. The OxalEurope registry will provide necessary tools for characterizing those genetic and non-genetic factors through a combination of genetic, functional, and biostatistical approaches.


Asunto(s)
Hiperoxaluria Primaria/genética , Fallo Renal Crónico/etiología , Mutación , Transaminasas/genética , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Codón sin Sentido , Diagnóstico Tardío , Europa (Continente) , Femenino , Mutación del Sistema de Lectura , Heterocigoto , Homocigoto , Humanos , Hiperoxaluria Primaria/complicaciones , Hiperoxaluria Primaria/diagnóstico , Lactante , Masculino , Persona de Mediana Edad , Mutación Missense , Fenotipo , Estudios Retrospectivos , Tasa de Supervivencia , Urolitiasis/etiología , Adulto Joven
20.
Ann Clin Transl Neurol ; 11(6): 1478-1491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703036

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS: Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS: The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION: We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/diagnóstico , Francia , Niño , Adulto , Masculino , Femenino , Adolescente , Persona de Mediana Edad , Preescolar , Estudios de Cohortes , Adulto Joven , Lactante , Secuenciación del Exoma , Anciano , Secuenciación Completa del Genoma , ADN Mitocondrial/genética , Diagnóstico Diferencial
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda