Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell ; 179(6): 1393-1408.e16, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31735496

RESUMEN

Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with ∼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.


Asunto(s)
Red Nerviosa/fisiología , Conducta Sexual Animal/fisiología , Animales , Estrógenos/metabolismo , Ciclo Estral/efectos de los fármacos , Femenino , Hormonas Esteroides Gonadales/farmacología , Hipotálamo Anterior/fisiología , Masculino , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovario/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Receptores de Progesterona/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
3.
Cell ; 165(7): 1789-1802, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27238021

RESUMEN

Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available.


Asunto(s)
Conducta Animal , Inmunohistoquímica , Neuroimagen/métodos , Animales , Antipsicóticos/administración & dosificación , Encéfalo/metabolismo , Conducta Exploratoria , Genes Inmediatos-Precoces , Haloperidol/administración & dosificación , Ratones , Ratones Endogámicos C57BL
4.
Proc Natl Acad Sci U S A ; 119(43): e2210122119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256819

RESUMEN

Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith-Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.


Asunto(s)
Síndrome de Smith-Magenis , Ratones , Animales , Síndrome de Smith-Magenis/genética , Transactivadores/genética , Transactivadores/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Cromatina , Hipocampo/metabolismo , Convulsiones/genética , Tretinoina
5.
Proc Natl Acad Sci U S A ; 117(20): 11068-11075, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358193

RESUMEN

The projection targets of a neuronal population are a key feature of its anatomical characteristics. Historically, tissue sectioning, confocal microscopy, and manual scoring of specific regions of interest have been used to generate coarse summaries of mesoscale projectomes. We present here TrailMap, a three-dimensional (3D) convolutional network for extracting axonal projections from intact cleared mouse brains imaged by light-sheet microscopy. TrailMap allows region-based quantification of total axon content in large and complex 3D structures after registration to a standard reference atlas. The identification of axonal structures as thin as one voxel benefits from data augmentation but also requires a loss function that tolerates errors in annotation. A network trained with volumes of serotonergic axons in all major brain regions can be generalized to map and quantify axons from thalamocortical, deep cerebellar, and cortical projection neurons, validating transfer learning as a tool to adapt the model to novel categories of axonal morphology. Speed of training, ease of use, and accuracy improve over existing tools without a need for specialized computing hardware. Given the recent emphasis on genetically and functionally defining cell types in neural circuit analysis, TrailMap will facilitate automated extraction and quantification of axons from these specific cell types at the scale of the entire mouse brain, an essential component of deciphering their connectivity.


Asunto(s)
Axones , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Animales , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Redes Neurales de la Computación , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Neuronas
6.
Circ Res ; 125(4): 379-397, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31284824

RESUMEN

RATIONALE: The cardiac conduction system (CCS) consists of distinct components including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers. Despite an essential role for the CCS in heart development and function, the CCS has remained challenging to interrogate because of inherent obstacles including small cell numbers, large cell-type heterogeneity, complex anatomy, and difficulty in isolation. Single-cell RNA-sequencing allows for genome-wide analysis of gene expression at single-cell resolution. OBJECTIVE: Assess the transcriptional landscape of the entire CCS at single-cell resolution by single-cell RNA-sequencing within the developing mouse heart. METHODS AND RESULTS: Wild-type, embryonic day 16.5 mouse hearts (n=6 per zone) were harvested and 3 zones of microdissection were isolated, including: Zone I-sinoatrial node region; Zone II-atrioventricular node/His region; and Zone III-bundle branch/Purkinje fiber region. Tissue was digested into single-cell suspensions, cells isolated, mRNA reverse transcribed, and barcoded before high-throughput sequencing and bioinformatics analyses. Single-cell RNA-sequencing was performed on over 22 000 cells, and all major cell types of the murine heart were successfully captured including bona fide clusters of cells consistent with each major component of the CCS. Unsupervised weighted gene coexpression network analysis led to the discovery of a host of novel CCS genes, a subset of which were validated using fluorescent in situ hybridization as well as whole-mount immunolabeling with volume imaging (iDISCO+) in 3 dimensions on intact mouse hearts. Further, subcluster analysis unveiled isolation of distinct CCS cell subtypes, including the clinically relevant but poorly characterized transitional cells that bridge the CCS and surrounding myocardium. CONCLUSIONS: Our study represents the first comprehensive assessment of the transcriptional profiles from the entire CCS at single-cell resolution and provides a characterization in the context of development and disease.


Asunto(s)
Sistema de Conducción Cardíaco/metabolismo , Transcriptoma , Animales , Sistema de Conducción Cardíaco/citología , Sistema de Conducción Cardíaco/embriología , Ratones , RNA-Seq , Análisis de la Célula Individual
7.
Neuron ; 107(6): 1113-1123.e4, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32679036

RESUMEN

Disrupting memories that associate environmental cues with drug experiences holds promise for treating addiction, yet accessing the distributed neural network that stores such memories is challenging. Here, we show that the paraventricular nucleus of the thalamus (PVT) orchestrates the acquisition and maintenance of opiate-associated memories via projections to the central nucleus of the amygdala (CeA) and nucleus accumbens (NAc). PVT→CeA activity associates morphine reward to the environment, whereas transient inhibition of the PVT→NAc pathway during retrieval causes enduring protection against opiate-primed relapse. Using brain-wide activity mapping, we revealed distributed network activities that are altered in non-relapsing mice, which enabled us to find that activating the downstream NAc→lateral hypothalamus (LH) pathway also prevents relapse. These findings establish the PVT as a key node in the opiate-associated memory network and demonstrate the potential of targeting the PVT→NAc→LH pathway for treating opioid addiction.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Núcleo Accumbens/fisiopatología , Trastornos Relacionados con Opioides/fisiopatología , Núcleo Hipotalámico Paraventricular/fisiopatología , Memoria Implícita , Animales , Señales (Psicología) , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiopatología
8.
Nat Neurosci ; 22(3): 460-469, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30692687

RESUMEN

Memories of fearful events can last a lifetime. The prelimbic (PL) cortex, a subregion of prefrontal cortex, plays a critical role in fear memory retrieval over time. Most studies have focused on acquisition, consolidation, and retrieval of recent memories, but much less is known about the neural mechanisms of remote memory. Using a new knock-in mouse for activity-dependent genetic labeling (TRAP2), we demonstrate that neuronal ensembles in the PL cortex are dynamic. PL neurons TRAPed during later memory retrievals are more likely to be reactivated and make larger behavioral contributions to remote memory retrieval compared to those TRAPed during learning or early memory retrieval. PL activity during learning is required to initiate this time-dependent reorganization in PL ensembles underlying memory retrieval. Finally, while neurons TRAPed during earlier and later retrievals have similar broad projections throughout the brain, PL neurons TRAPed later have a stronger functional recruitment of cortical targets.


Asunto(s)
Corteza Cerebral/fisiología , Memoria a Largo Plazo/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Condicionamiento Clásico , Miedo , Integrasas/metabolismo , Aprendizaje/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Tamoxifeno/administración & dosificación
9.
Neuron ; 103(3): 412-422.e4, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31221560

RESUMEN

Selective synaptic and axonal degeneration are critical aspects of both brain development and neurodegenerative disease. Inhibition of caspase signaling in neurons is a potential therapeutic strategy for neurodegenerative disease, but no neuron-specific modulators of caspase signaling have been described. Using a mass spectrometry approach, we discovered that RUFY3, a neuronally enriched protein, is essential for caspase-mediated degeneration of TRKA+ sensory axons in vitro and in vivo. Deletion of Rufy3 protects axons from degeneration, even in the presence of activated CASP3 that is competent to cleave endogenous substrates. Dephosphorylation of RUFY3 at residue S34 appears required for axon degeneration, providing a potential mechanism for neurons to locally control caspase-driven degeneration. Neuronally enriched RUFY3 thus provides an entry point for understanding non-apoptotic functions of CASP3 and a potential target to modulate caspase signaling specifically in neurons for neurodegenerative disease.


Asunto(s)
Axones/patología , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/fisiología , Animales , Axones/enzimología , Caspasa 3/fisiología , Células Cultivadas , Proteínas del Citoesqueleto , Activación Enzimática , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ratones , Ratones Noqueados , Degeneración Nerviosa/enzimología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Fosforilación , Procesamiento Proteico-Postraduccional , Receptor trkA/fisiología , Células Receptoras Sensoriales/fisiología , Relación Estructura-Actividad
11.
Cell Rep ; 16(2): 357-367, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27346344

RESUMEN

The molecular clock relies on a delayed negative feedback loop of transcriptional regulation to generate oscillating gene expression. Although the principal components of the clock are present in all circadian neurons, different neuronal clusters have varying effects on rhythmic behavior, suggesting that the clocks they house are differently regulated. Combining biochemical and genetic techniques in Drosophila, we identify a phosphorylation program native to the master pacemaker neurons that regulates the timing of nuclear accumulation of the Period/Timeless repressor complex. GSK-3/SGG binds and phosphorylates Period-bound Timeless, triggering a CK2-mediated phosphorylation cascade. Mutations that block the hierarchical phosphorylation of Timeless in vitro also delay nuclear accumulation in both tissue culture and in vivo and predictably change rhythmic behavior. This two-kinase phosphorylation cascade is anatomically restricted to the eight master pacemaker neurons, distinguishing the regulatory mechanism of the molecular clock within these neurons from the other clocks that cooperate to govern behavioral rhythmicity.


Asunto(s)
Quinasa de la Caseína II/fisiología , Relojes Circadianos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Glucógeno Sintasa Quinasa 3/fisiología , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Línea Celular , Núcleo Celular/metabolismo , Secuencia Conservada , Fosforilación , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda