Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Environ Manage ; 354: 120261, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354608

RESUMEN

The future of reactive nitrogen (N) for subtropical lowland rice to be characterised under diverse N-management to develop adequate sustainable practices. It is a challenge to increase the efficiency of N use in lowland rice, as N can be lost in various ways, e.g., through nitrous oxide (N2O) or dinitrogen (N2) emissions, ammonia (NH3) volatilization and nitrate (NO3-) leaching. A field study was carried out in the subsequent wet (2021) and dry (2022) seasons to assess the impacts of different N management strategies on yield, N use efficiency and different N losses in a double-cropped rice system. Seven different N-management practices including application of chemical fertilisers, liquid organic fertiliser, nitrification inhibitors, organic nutrient management and integrated nutrient management (INM) were studied. The application of soil test-based neem-coated urea (NCU) during the wet season resulted in the highest economic yield, while integrated nutrient management showed the highest economic yield during the dry season. Total N losses by volatilization of NH3, N2O loss and leaching were 0.06-4.73, 0.32-2.14 and 0.25-1.93 kg ha-1, corresponding to 0.06-5.84%, 0.11-2.20% and 0.09-1.81% of total applied N, respectively. The total N-uptake in grain and straw was highest in INM (87-89% over control) followed by the soil test-based NCU (77-82% over control). In comparison, recovery efficiency of N was maximum from application of NCU + dicyandiamide during both the seasons. The N footprint of paddy rice ranged 0.46-2.01 kg N-eq. t-1 during both seasons under various N management. Ammonia volatilization was the process responsible for the largest N loss, followed by N2O emissions, and NO3- leaching in these subtropical lowland rice fields. After ranking the different N management practices on a scale of 1-7, soil test-based NCU was considered the best N management approach in the wet year 2021, while INM scored the best in the dry year 2022.


Asunto(s)
Oryza , Nitrógeno/análisis , Agricultura/métodos , Amoníaco/análisis , Suelo , Fertilizantes/análisis , Óxido Nitroso/análisis
2.
Indian J Microbiol ; 60(3): 325-333, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32655199

RESUMEN

Ochrobactrum genus is known to catabolize aromatic compounds. This study reports a complete genome sequence of Ochrobactrum sp. CPD-03 (~ 4.6 Mb of chromosomal features) responsible for chlorpyrifos (CP) isolated form a paddy field (20.3588° N, 85.8333° E) in Bhubaneswar, India. A comparative genomics approach was performed between CPD-03 and eight closely related genomes of other Ochrobactrum strains in order to deepen our knowledge, to establish its phylogenetic and functional relationships. The involvement of CP degrading genes indicated a versatile role of CPD-03 in additional field trails. This research would provide the genetic information for its use in natural environment for the depletion of organophosphorus (OP) compounds.

3.
Int J Syst Evol Microbiol ; 66(8): 3241-3248, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27220564

RESUMEN

A novel actinobacterial strain RC1832T was isolated from the sediment of a fish dumping yard at Balugaon near Chilika Lake. The strain is halotolerant (15 % NaCl, w/v), alkali-tolerant (pH 7-10) and hydrolyzes chitin, starch, gelatin, cellulose, carboxymethyl cellulose, Tween 80, tributyrin, lecithin and casein. Apart from showing typical genus-specific morphological and chemotaxonomic features, the comparision and analysis of the near complete 16S rRNA gene sequence clearly revealed that the strain RC1832T represented a member of the genus Streptomyces. It exhibited the highest sequence similarities with the strains Streptomyces fenghuangensis GIMN4.003T (99.78 %), Streptomyces nanhaiensis DSM 41926T (99.07 %), Streptomyces radiopugnans R97T(98.71 %), Streptomyces atacamensis DSM 42065T (98.65 %) and Streptomyces barkulensis DSM 42082T (98.25 %). The DNA-DNA relatedness of strain RC 1832T with the closest phylogenetic neighbours S. fenghuangensis GIMN4.003T and S. nanhaiensis DSM 41926T were 20±2 % and 21±2 %, respectively. Thus, based on a range of phenotypic and genotypic properties, strain RC1832T was suggested to represent a novel species of the genus Streptomyces for which the name Streptomyces chitinivorans sp. nov. is proposed. The type strain is RC1832T (=JCM 30611=KCTC 29696).


Asunto(s)
Estuarios , Sedimentos Geológicos/microbiología , Lagos/microbiología , Filogenia , Streptomyces/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptomyces/genética , Streptomyces/aislamiento & purificación
4.
Int J Syst Evol Microbiol ; 64(Pt 4): 1365-1372, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24436069

RESUMEN

The taxonomic position of a novel actinomycete, strain RC 1831(T), isolated from the sediment of a fish dumping yard at Barkul village near Chilika Lake, Odisha, India, was determined by a polyphasic approach. Based on morphological and chemotaxonomic characteristics the isolate was determined to belong to the genus Streptomyces. The phylogenetic tree based on its nearly complete 16S rRNA gene sequence (1428 nt) with representative strains showed that the strain consistently falls into a distinct phyletic line together with Streptomyces glaucosporus DSM 41689(T) (98.22% similarity) and a subclade consisting of Streptomyces atacamensis DSM 42065(T) (98.40%), Streptomyces radiopugnans R97 DSM 41901(T) (98.27%), Streptomyces fenghuangensis GIMN4.003(T) (98.33 %), Streptomyces nanhaiensis DSM 41926(T) (98.13%), Streptomyces megasporus NBRC 14749(T) (97.37%) and Streptomyces macrosporus NBRC 14748(T) (98.22%). However, the levels of DNA-DNA relatedness between strain RC 1831(T) and phylogenetically related strains Streptomyces atacamensis DSM 42065(T) (28.75 ± 3.25%) and Streptomyces glaucosporus DSM 41689(T) (15 ± 2.40%) were significantly lower than the 70% threshold value for delineation of genomic species. Furthermore, the isolate could be distinguished phenotypically on the basis of physiological, morphological and biochemical differences from its closest phylogenetic neighbours and other related reference strains. Strain RC 1831(T) is therefore considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces barkulensis sp. nov. is proposed. The type strain is RC 1831(T) ( = JCM 18754(T) = DSM 42082(T)).


Asunto(s)
Lagos/microbiología , Filogenia , Streptomyces/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Estuarios , Ácidos Grasos/química , Sedimentos Geológicos/microbiología , India , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptomyces/genética , Streptomyces/aislamiento & purificación , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Biofabrication ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981495

RESUMEN

One ever-evolving and ever-demanding critical human endeavour is the provision of food security for the growing world population. It could be done by adopting sustainable agriculture through horizontal (expanding the aerable land area) and vertical (intensifying agriculture through sound technological approaches) interventions. Customised formulated nanomaterials have numerous advantages. With their specialised physicochemical properties, some nanoparticulised materials improve plant's natural development and stress tolerance and some other are good nanocarriers. Nanocarriers in agriculture often coat chemicals to form composites having utilities with crop productivity enhancement abilities, environmental management (like ecotoxicity reduction ability), and biomedicines (like the ability of controlled and targeted release of useful nanoscale drugs). The Ag, Fe, Zn, TiO2, ZnO, SiO2 and MgO nanoparticles often employed in advanced agriculture are covered here. Some nanoparticles used for various extended purposes in modern farming practices, including disease diagnostics and seed treatment are covered too. Thus, nanotechnology has revolutionised agrotechnology, which holds promises to transform agricultural (eco)system as a whole to ensure food security in future. Considering the available literature, the article further probes the emergent regulatory issues governing the synthesis and use of nanomaterials in the agriculture sector. If applied responsibly, nanomaterials could help improve soil health. The article provides an overview of the used nanomaterials in distribution of biomolecules, to aid in devising a safer and eco-friendly sustainable agriculture strategy. Through this, agri-systems depending on advanced farming practices might function more effectively and enhance agri-productivity to meet the food demand of the rising world population.

6.
J Fungi (Basel) ; 9(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983454

RESUMEN

Humans are colonized by diverse populations of microbes. Infections by Candida albicans, an opportunistic fungal pathogen, are a result of imbalances in the gut microbial ecosystem and are due to the suppressed immunity of the host. Here, we explored the potential effects of the polymicrobial interactions of C. albicans with Staphylococcus aureus, a Gram-positive bacterium, and Escherichia coli, a Gram-negative bacterium, in dual and triple in vitro culture systems on their respective growth, morphology, and biofilms. We found that S. aureus promoted the fungal growth and hyphal transition of C. albicans through cell-to-cell contacts; contrarily, both the cell and cell-free culture filtrate of E. coli inhibited fungal growth. A yet to be identified secretory metabolite of E. coli functionally mimicked EDTA and EGTA to exhibit antifungal activity. These findings suggested that E. coli, but not S. aureus, functions as a chelating agent and that E. coli plays a dominant role in regulating excessive growth and, potentially, the commensalism of C. albicans. Using animal models of systemic candidiasis, we found that the E. coli cell-free filtrate suppressed the virulence of C. albicans. In general, this study unraveled a significant antimicrobial activity and a potential role in the nutritional immunity of E. coli, and further determining the underlying processes behind the E. coli-C. albicans interaction could provide critical information in understanding the pathogenicity of C. albicans.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35895918

RESUMEN

In recent times, environmental pollution has been an alarming concern. This is increasing day-in-and-day-out, especially in the Asia-Pacific region due to the increasing population, urbanization, industrialization and inappropriate waste management measures. Pollution abatement is the need of the hour to sustain the biosphere in general and the human life in particular. A range of physical, chemical and biological strategies are commonly employed to remove pollutants from the contained water, soil and air. Physical, chemical or physicochemical remediation processes are commonly employed owing to their high efficiency, stability, recyclable property and low procurement cost as compared to metals, inorganic and organic materials. Materials of the later type include biocomposites, thin films, modified (bio)polymers, nanoparticles, nanofilters, sorbent like activated charcoal, and carbon nanotubes and nanosensors. Remediation mechanism largely follows sorption, degradation, oxidation, reduction, catalytic conversion, detection and microbial toxicity principles. This review details the mechanisms of action by these various remediating entities, their successful applications in pollution abatement, drawbacks and future prospects.HighlightsEnvironmental remediation using metals, inorganic and organic materials are discussed extensively.Major remediating approaches, viz., physical, physicochemical and chemical are elaborated citing latest references.The significance of biocomposites, biopolymers, polymers, thin films, nanoparticles, nanofilters, nanosensors and sorbents in remediation are highlighted.Pollutant removal from water, air and soil has been precisely discussed.A note on drawbacks, improvement and future prospects of remediating agents is presented.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Nanotubos de Carbono , Humanos , Metales , Polímeros , Suelo , Agua
8.
3 Biotech ; 11(10): 439, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34603916

RESUMEN

Chlorpyrifos (CP) is a persistent organophosphorus pesticide (OP) used in soil ecosystem for insect control. Bioremediation process has been proven promising in degrading these toxic molecules and restoring the physio-chemical properties of soil. This work reports a laboratory microcosm study in both non-sterile & sterile conditions, conducted over a period of 56 days to examine the combined effect of additional supplements like biostimulants (BSs) such as N, P, and K in the presence of suitable carrier materials (compost, wheat straw, and corncob) along with bioaugmentation by a Ochrobactrum sp. CPD-03 on CP degradation from the contaminated soil. CP degradation was thoroughly monitored at an interval of 7 days over a period of 56 days. Results showed biostimulation and bioaugmentation along with compost as carrier material had shown higher CP degradation efficiency of 76 ± 2.8 and 74 ± 1.6% in non-sterile and sterile microcosms over a period of 56 days. Moreover, bacterial community profiling (16s rRNA and opd gene) demonstrated increased microbial counts, corroborating the efficiency of the bioremediation process. The survival of CPD-03 at the end of the assay validated its ability of colonizing modified soils. By this integrated method with compost as carrier material, bioremediation process could be enhanced for restoration CP-contaminated soils. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02980-9.

9.
Biotechnol Rep (Amst) ; 21: e00311, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30775271

RESUMEN

An extracellular thermo-alkali stable chitinase was obtained from Streptomyces chilikensis RC1830, a novel actinobacterial strain isolated from the sediments of Chilika lake, India. Purification of the enzyme was carried out by concentrating the enzyme with centrifugal device followed by chromatographic separation by DEAE Sepharose ion exchange resin.The molecular weight of the enzyme was 10.5 kDa as determined by SDS-PAGE. The optimum pH and temperature for the partially purified chitinase was pH 7 and 60 °C. The chitinase showed 40% activity at pH 11 after 24 h exposure at room temperature. The chitinase exhibited Km and Vmax values are 0.02 mM and 3.184 mol/min/mg of enzyme respectively. The 6 residue N-terminal sequence of the enzyme was not found similar to any of the reported chitinase enzyme. Based on the SDS PAGE, zymogram analysis, activity assays and other characteristics, it is proposed that the purified enzyme from S.chilikensis RC1830 is a chitinase.

10.
J Microbiol ; 56(4): 223-230, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29611137

RESUMEN

moderately halophilic spore forming, motile, Gram-positive, rod-shaped bacterial strain designated as KGW1T was isolated from water sample of Chilika Lake and characterized taxonomically using polyphasic approach. The strain grew in the presence of 0-25% (w/v) NaCl in marine salt agar media, hydrolyzes casein, and gelatin and shows presence of alkaline proteases. The major cell wall menaquinone was MK7 and major cellular fatty acids were anteiso-C15:0 (44.89%), anteiso-C17:0 (6.18%), isoC15:0 (19.38%), and iso-C16:0 (7.39%). Several chemotaxonomic features conform the isolate be a member of genus Halobacillus. The isolate KGW1T contained A1γ meso-Dpm-direct type of peptidoglycan which is different from its phylogenetically closest neighbours. The 16S rRNA gene sequence based phylogenetic analysis also revealed the strain KGW1T was affiliated to the genus Halobacillus and sequence similarity between the isolated strain and the type strains of Halobacillus species were found closest to, H. dabanensis D-8 DSM 18199T (99.08%) and H. faecis IGA7-4 DSM 21559T (99.01%), H. trueperi SL-5 DSM 10404T (98.94%). The in silico DDH showed that the values in a range of 14.2-17.5% with the most closest strain H. dabanensis D-8 DSM 18199T and other type strains of the genus Halobacillus for which whole genome sequence is reported. DNA-DNA relatedness between strain KGW1T and the closest type strain Halobacillus trueperi DSM 10404T was 11.75% (± 1.15). The draft genome sequence includes 3,683,819 bases and comprises of 3898 predicted coding sequences with a G + C content of 46.98%. Thus, the significant distinctiveness supported by phenotypic and genotypic data with its closest neighbors and other closely related species confirm the strain KGW1T to be classified as a novel species within the genus Halobacillus, for which the name Halobacillus marinus sp. nov. is proposed. The type strain is KGW1T (= DSM 29522 = JCM 30443).


Asunto(s)
Genoma Bacteriano , Halobacillus/clasificación , Halobacillus/genética , Lagos/microbiología , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácidos Grasos/análisis , Genotipo , Halobacillus/química , Halobacillus/aislamiento & purificación , India , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Salinidad , Análisis de Secuencia de ADN
11.
Genome Announc ; 4(3)2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27365340

RESUMEN

We report the 4.51 Mb draft genome of Pseudomonas sp. strain BMS12, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric sediment of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The Pseudomonas sp. strain BMS12 is capable of producing proteases and is also an efficient plant growth promoter that can be useful for various phytoremedial and industrial applications.

12.
Genome Announc ; 4(3)2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27365341

RESUMEN

Halobacillus sp. strain KGW1 is a moderately halophilic, rod shaped, Gram-positive, yellow pigmented, alkaline protease-producing bacterium isolated from a water sample from Chilika Lake, Odisha, India. Sequencing of bacterial DNA assembled a 3.68-Mb draft genome. The genome annotation analysis showed various gene clusters for tolerance to stress, such as elevated pH, salt concentration, and toxic metals.

13.
Genome Announc ; 4(3)2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27365343

RESUMEN

We report the 3.16 Mb draft genome of Acinetobacter sp. strain BMW17, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric region of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The strain BMW17(T) is capable of degrading cellulose and is also an efficient plant growth promoter that can be useful for various phytoremedial and commercial applications.

14.
Bioresour Technol ; 149: 439-45, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24135568

RESUMEN

Strategies were designed for bioremediation of the highly persistent toxic pesticide γ-hexachlorocyclohexane (γ-HCH) or lindane from the environment. Lindane caused the loss of stress-protective chaperone GroEL, and inhibited photosynthesis, respiration and nitrogen-fixation in Anabaena, resulting in growth arrest. To alleviate lindane toxicity, the linA2 gene, encoding HCH dehydrochlorinase from Sphingomonas paucimobilis B90, was knocked-in at an innocuous locus in Anabaena genome and over-expressed from an eco-friendly light-inducible PpsbA1 promoter. The recombinant Anabaena degraded >98% of 10 ppm lindane within 6-10 days. A LinA2 overexpressing Escherichia coli strain could degrade 10 ppm of all the isomers of lindane within 1h and displayed a visual degradation zone on a newly designed histochemical plate containing 50mg lindane within 12h. The study demonstrates (a) bioremediation of traces of lindane prevalent in paddy fields, using bioengineered photoautotrophic Anabaena, and, (b) biodegradation of huge stockpiles of lindane, by employing recombinant live/dead E. coli.


Asunto(s)
Anabaena/genética , Anabaena/metabolismo , Ingeniería Genética , Hexaclorociclohexano/metabolismo , Plaguicidas/metabolismo , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Escherichia coli/metabolismo , Genes Bacterianos , Recombinación Genética/genética , Sphingomonas , Estrés Fisiológico , Xenobióticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda