Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-34554044

RESUMEN

The study investigated the use of activated carbon (AC), produced from pinewood, to remove copper, zinc and iron from modified landfill leachates. South Africa faces an imminent water crisis, hence the need to see wastewater as an important source that must be treated and reused to combat water deficits in future. The use of AC as a soil amendment for the removal of heavy metals (HM) is not well researched. This study aimed to determine the ideal amount of AC (5%, 10%, 15% and 20% [w/w]) to add to soil using leaching columns for optimum HM adsorption. Modified acidic wastewater (pH > 2) was leached through soil columns packed with sandy loam soil and different amounts of AC (5%, 10%, 15% and 20% [w/w]). The results indicated that all the columns efficiently removed 94% copper, 80% zinc and 99% iron. Even a small amount (5% w/w) of AC was effective in removing HMs and can thus be considered as a possible cost-effective treatment option for acidic wastewater.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adsorción , Carbón Orgánico , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Aguas Residuales
2.
Environ Sci Pollut Res Int ; 30(18): 53577-53588, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36859642

RESUMEN

One of the consequences of mining is the release of heavy metals into the environment, especially water bodies. Phytoremediation of areas contaminated by heavy metals using Vetiver grass and Indian mustard is cost-effective and environmentally friendly. This study aimed at enhancing remediation of heavy metal contaminated water through the simultaneous hybrid application of clay minerals (attapulgite and bentonite) and Vetiver grass or Indian mustard. A 21-day greenhouse experiment was carried out to investigate the effectiveness of the clay minerals to improve heavy metal phytoremediation. The highest accumulation of aluminium (Al) by Vetiver grass was 371.8 mg/kg in the BT2.5VT treatment, while for Mn, the highest accumulation of 34.71 mg/kg was observed in the AT1VT treatment. However, Indian mustard showed no significant uptake of heavy metals, but suffered heavy metal toxicity despite the addition of clay minerals. From this study, it was evident that bentonite added at 2.5% (w/v) could improve the phytoremediation capacity of Vetiver grass for Al and Mn polluted water. The current laboratory-scale findings provided a basis for field trials earmarked for remediation in a post-mining coal environment in South Africa. This remediation approach can also be adopted in other places.


Asunto(s)
Chrysopogon , Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Arcilla , Planta de la Mostaza , Aluminio , Bentonita , Contaminantes del Suelo/análisis , Suelo , Metales Pesados/análisis
3.
Environ Technol ; 43(5): 774-787, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32741271

RESUMEN

Biochar is known to be a highly adsorptive material, especially when the biochar is altered by activation to further increase its sorption ability. Little information, however, is available on the potential reversibility of both ammonium (NH4+) and nitrate (NO3-) sorption on the inherent biochar pH. The objective of our study was to characterise biochars made using different pyrolysis conditions from five various plant materials and rubber tyre, and to use them to investigate the biochar properties responsible for NH4+ and NO3- adsorption and desorption. The rubber tyre, maize stover and sugarcane pith were the weakest adsorbing biochars (5.7-7.8 mg g-1) and best described by the Freundlich adsorption isotherm. The grape pip, grape skin and pine wood biochars had adsorption capacities in the range 8.3-9.4 mg NH4+ g-1 and best described by a linear adsorption isotherm at 100 mg L-1. The NH4+ adsorption results were associated with physisorption which implies that they can act as slow release NH4+ fertilisers if NH4+ is bioavailable. The six biochars had NO3- adsorption capacities in the range 15.2-15.9 mg g-1 and were well fitted to the linear adsorption isotherm at 100 mg L-1. All six biochars had a stronger NO3- removal affinity (82-89%) compared to NH4+ (33-39%). Adsorbed nitrate was not desorbable (0.01-0.23%) compared to adsorbed NH4+ which was 53-60% desorbable. The desorption result was possibly due to NO3- competing redox reactions or NO3- being too strongly adsorbed for extraction. Desorption of NH4+ was associated with biochar net negative pH values and volatilisation of ammonia.


Asunto(s)
Compuestos de Amonio , Adsorción , Carbón Orgánico , Nitratos
4.
Water Res ; 221: 118775, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35803045

RESUMEN

Biochar is a valuable treatment option for faecal sludge management (FSM). However, the sanitation application rates of biochar in FSM are not well established. There is also a gap in knowledge about the effect of actual raw sewage effluent and sludge on organic and inorganic contaminants migration of biochar treated soil. This study investigated the concentration and migration rates of N, P, E. coli and faecal coliform bacteria through different soil-bed biochar column treatments leached with raw faecal sludge and sewage effluent. Forty-four soil-bed leaching columns with pinewood biochar rates at 5, 10 and 20 t/ha were set at the Bloemspruit wastewater plant, South Africa. The pinewood biochar used had a pH of 10.21, total C composition of 92%, surface area of 517 m²/g, and a pore size of 1.7 nm. It was found that the 20 t biochar per ha treatment with faecal sludge increased water retention (flows of 33 mm/h. at 0 t/ha compared to 0.8 mm/h. at 20 t/ha) and leachates purification. High detections were observed for faecal coliforms and E.coli above 4331 CFU/100 mL from the effluent and faecal sludge in soils without biochar. Detection of E.coli at 20 t/ha decreased to 1 CFU/100 mL while the faecal coliforms still had counts above 10 CFU/ 100 mL. The results showed a decreasing rate of nitrates, phosphates, zinc and copper with an increasing biochar application rate. Pinewood biochar showed significant removal efficiencies of bacteria (between 89 and 98%) and nitrates and phosphates (between 68 and 98%). Significant differences were seen at P < 0.05 between the means of the treatments with and without biochar. The results from the study show that pinewood biochar applied at rates between 5 and 20 t/ha has a high organic and inorganic contaminants reduction potential for FSM.


Asunto(s)
Pinus , Contaminantes del Suelo , Bacterias , Carbón Orgánico/química , Escherichia coli , Fosfatos , Aguas del Alcantarillado/química , Suelo/química , Contaminantes del Suelo/análisis , Aguas Residuales
5.
Artículo en Inglés | MEDLINE | ID: mdl-32531878

RESUMEN

Most people in rural areas in South Africa (SA) rely on untreated drinking groundwater sources and pit latrine sanitations. A minimum basic sanitation facility should enable safe and appropriate removal of human waste, and although pit latrines provide this, they are still contamination concerns. Pit latrine sludge in SA is mostly emptied and disposed off-site as waste or buried in-situ. Despite having knowledge of potential sludge benefits, most communities in SA are reluctant to use it. This research captured social perceptions regarding latrine sludge management in Monontsha village in the Free State Province of SA through key informant interviews and questionnaires. A key informant interview and questionnaire was done in Monontsha, SA. Eighty participants, representing 5% of all households, were selected. Water samples from four boreholes and four rivers were analyzed for faecal coliforms and E.coli bacteria. On average, five people in a household were sharing a pit latrine. Eighty-three percent disposed filled pit latrines while 17% resorted to closing the filled latrines. Outbreaks of diarrhoea (69%) and cholera (14%) were common. Sixty percent were willing to use treated faecal sludge in agriculture. The binary logistic regression model indicated that predictor variables significantly (p ˂ 0.05) described water quality, faecal sludge management, sludge application in agriculture and biochar adaption. Most drinking water sources in the study had detections ˂ 1 CFU/100 mL. It is therefore imperative to use both qualitative surveys and analytical data. Awareness can go a long way to motivate individuals to adopt to a new change.


Asunto(s)
Agricultura , Eliminación de Residuos Líquidos , Animales , Femenino , Humanos , Masculino , Saneamiento , Aguas del Alcantarillado , Sudáfrica , Cuartos de Baño
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda