Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell ; 184(20): 5084-5086, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34559984

RESUMEN

In this issue of Cell, Ganaie et al. reports the identification of LRP1 as a receptor of the highly pathogenic Rift Valley fever virus. By using genome-wide CRISPR-Cas9 screening and functional studies, Ganaie et al. identified LRP1 and several co-factors as essential elements for virus infection.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Receptores Virales , Virus de la Fiebre del Valle del Rift/genética
2.
Cell ; 184(8): 2229-2238.e13, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33691138

RESUMEN

The biosafety level 3 (BSL-3) requirement to culture severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a bottleneck for research. Here, we report a trans-complementation system that produces single-round infectious SARS-CoV-2 that recapitulates authentic viral replication. We demonstrate that the single-round infectious SARS-CoV-2 can be used at BSL-2 laboratories for high-throughput neutralization and antiviral testing. The trans-complementation system consists of two components: a genomic viral RNA containing ORF3 and envelope gene deletions, as well as mutated transcriptional regulator sequences, and a producer cell line expressing the two deleted genes. Trans-complementation of the two components generates virions that can infect naive cells for only one round but does not produce wild-type SARS-CoV-2. Hamsters and K18-hACE2 transgenic mice inoculated with the complementation-derived virions exhibited no detectable disease, even after intracranial inoculation with the highest possible dose. Thus, the trans-complementation platform can be safely used at BSL-2 laboratories for research and countermeasure development.


Asunto(s)
COVID-19/virología , Contención de Riesgos Biológicos/métodos , SARS-CoV-2 , Células A549 , Animales , Chlorocebus aethiops , Cricetinae , Prueba de Complementación Genética/métodos , Genoma Viral , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , ARN Viral , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Células Vero , Virulencia , Replicación Viral
3.
Emerg Infect Dis ; 26(9)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32568661

RESUMEN

We aerosolized severe acute respiratory syndrome coronavirus 2 and determined that its dynamic aerosol efficiency surpassed those of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome. Although we performed experiment only once across several laboratories, our findings suggest retained infectivity and virion integrity for up to 16 hours in respirable-sized aerosols.


Asunto(s)
Aerosoles/aislamiento & purificación , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/transmisión , Transmisión de Enfermedad Infecciosa , Neumonía Viral/transmisión , Suspensiones/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Pandemias , Neumonía Viral/virología , SARS-CoV-2
4.
J Virol ; 90(2): 873-86, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26512089

RESUMEN

UNLABELLED: Severe fever with thrombocytopenia syndrome (SFTS) virus is a newly recognized member of the genus Phlebovirus in the family Bunyaviridae. The virus was isolated from patients presenting with hemorrhagic manifestations and an initial case fatality rate of 12 to 30% was reported. Due to the recent emergence of this pathogen, there is limited knowledge on the molecular virology of SFTS virus. Recently, we reported that the SFTS virus NSs protein inhibited the activation of the beta interferon (IFN-ß) promoter. Furthermore, we also found that SFTS virus NSs relocalizes key components of the IFN response into NSs-induced cytoplasmic structures. Due to the important role these structures play during SFTS virus replication, we conducted live cell imaging studies to gain further insight into the role and trafficking of these cytoplasmic structures during virus infection. We found that some of the SFTS virus NSs-positive cytoplasmic structures were secreted to the extracellular space and endocytosed by neighboring cells. We also found that these secreted structures isolated from NSs-expressing cells and SFTS virus-infected cells were positive for the viral protein NSs and the host protein CD63, a protein associated with extracellular vesicles. Electron microscopy studies also revealed that the isolated CD63-immunoprecipitated extracellular vesicles produced during SFTS virus infection contained virions. The virions harbored within these structures were efficiently delivered to uninfected cells and were able to sustain SFTS virus replication. Altogether, these results suggest that SFTS virus exploits extracellular vesicles to mediate virus receptor-independent transmission to host cells and open the avenue for novel therapeutic strategies against SFTS virus and related pathogens. IMPORTANCE: SFTS virus is novel bunyavirus associated with hemorrhagic fever illness. Currently, limited information is available about SFTS virus. In the present study, we demonstrated that extracellular vesicles produced by SFTS virus-infected cells harbor infectious virions. We sought to determine whether these "infectious" extracellular vesicles can mediate transmission of the virus and confirmed that the SFTS virions were efficiently transported by these secreted structures into uninfected cells and were able to sustain efficient replication of SFTS virus. These results have significant impact on our understanding of how the novel tick-borne phleboviruses hijack cellular machineries to establish infection and point toward a novel mechanism for virus replication among arthropod-borne viruses.


Asunto(s)
Vesículas Extracelulares/virología , Phlebovirus/aislamiento & purificación , Virión/aislamiento & purificación , Virión/fisiología , Internalización del Virus , Liberación del Virus , Animales , Chlorocebus aethiops , Endocitosis , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Células Vero
5.
Emerg Infect Dis ; 21(5): 781-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25898901

RESUMEN

Our genetic analyses of uncharacterized bunyaviruses isolated in Peru identified a possible reassortant virus containing small and large gene segment sequences closely related to the Caraparu virus and a medium gene segment sequence potentially derived from an unidentified group C orthobunyavirus. Neutralization tests confirmed serologic distinction among the newly identified virus and the prototype and Caraparu strains. This virus, named Itaya, was isolated in 1999 and 2006 from febrile patients in the cities of Iquitos and Yurimaguas in Peru. The geographic distance between the 2 cases suggests that the Itaya virus could be widely distributed throughout the Amazon basin in northeastern Peru. Identification of a new Orthobunyavirus species that causes febrile disease in humans reinforces the need to expand viral disease surveillance in tropical regions of South America.


Asunto(s)
Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , Fiebre/epidemiología , Fiebre/virología , Orthobunyavirus/clasificación , Adulto , Animales , Línea Celular , Geografía , Humanos , Masculino , Pruebas de Neutralización , Orthobunyavirus/genética , Orthobunyavirus/aislamiento & purificación , Perú/epidemiología , Filogenia , Vigilancia de la Población , ARN Viral , Virus Reordenados , Serotipificación
6.
J Virol ; 88(8): 4572-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24478431

RESUMEN

UNLABELLED: Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses. The SFTSV NSs protein was found to inhibit the activation of the beta interferon (IFN-ß) promoter induced by viral infection and by a RIG-I ligand. Astonishingly, we found that SFTSV NSs interacts with and relocalizes RIG-I, the E3 ubiquitin ligase TRIM25, and TANK-binding kinase 1 (TBK1) into SFTSV NSs-induced cytoplasmic structures. Interestingly, formation of these SFTSV NSs-induced structures occurred in the absence of the Atg7 gene, a gene essential for autophagy. Furthermore, confocal microscopy studies revealed that these SFTSV NSs-induced structures colocalize with Rab5 but not with Golgi apparatus or endoplasmic reticulum markers. Altogether, the data suggest that sequestration of RIG-I signaling molecules into endosome-like structures may be the mechanism used by SFTSV to inhibit IFN responses and point toward a novel mechanism for the suppression of IFN responses. IMPORTANCE: The mechanism by which the newly described SFTSV inhibits host antiviral responses has not yet been fully characterized. In this study, we describe the redistribution of RIG-I signaling components into virus-induced cytoplasmic structures in cells infected with SFTSV. This redistribution correlates with the inhibition of host antiviral responses. Further characterization of the interplay between the viral protein and components of the IFN responses could potentially provide targets for the rational development of therapeutic interventions.


Asunto(s)
Infecciones por Bunyaviridae/enzimología , ARN Helicasas DEAD-box/metabolismo , Endosomas/metabolismo , Interferón Tipo I/inmunología , Phlebovirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Infecciones por Bunyaviridae/genética , Infecciones por Bunyaviridae/inmunología , Infecciones por Bunyaviridae/virología , Línea Celular , Estructuras Citoplasmáticas , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , Endosomas/genética , Humanos , Interferón Tipo I/genética , Phlebovirus/genética , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Receptores Inmunológicos , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas no Estructurales Virales/genética
7.
J Gen Virol ; 95(Pt 4): 787-792, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24421116

RESUMEN

Arboretum virus (ABTV) and Puerto Almendras virus (PTAMV) are two mosquito-associated rhabdoviruses isolated from pools of Psorophora albigenu and Ochlerotattus fulvus mosquitoes, respectively, collected in the Department of Loreto, Peru, in 2009. Initial tests suggested that both viruses were novel rhabdoviruses and this was confirmed by complete genome sequencing. Analysis of their 11 482 nt (ABTV) and 11 876 (PTAMV) genomes indicates that they encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with an additional gene (U1) encoding a small hydrophobic protein. Evolutionary analysis of the L protein indicates that ABTV and PTAMV are novel and phylogenetically distinct rhabdoviruses that cannot be classified as members of any of the eight currently recognized genera within the family Rhabdoviridae, highlighting the vast diversity of this virus family.


Asunto(s)
Culicidae/virología , Genoma Viral , ARN Viral/genética , Rhabdoviridae/clasificación , Rhabdoviridae/aislamiento & purificación , Análisis de Secuencia de ADN , Animales , Análisis por Conglomerados , Femenino , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Perú , Filogenia , Rhabdoviridae/genética , Homología de Secuencia , Proteínas Virales/genética , Virión/ultraestructura
8.
Nature ; 455(7212): 532-6, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18716625

RESUMEN

Investigation of the human antibody response to influenza virus infection has been largely limited to serology, with relatively little analysis at the molecular level. The 1918 H1N1 influenza virus pandemic was the most severe of the modern era. Recent work has recovered the gene sequences of this unusual strain, so that the 1918 pandemic virus could be reconstituted to display its unique virulence phenotypes. However, little is known about adaptive immunity to this virus. We took advantage of the 1918 virus sequencing and the resultant production of recombinant 1918 haemagglutinin (HA) protein antigen to characterize at the clonal level neutralizing antibodies induced by natural exposure of survivors to the 1918 pandemic virus. Here we show that of the 32 individuals tested that were born in or before 1915, each showed seroreactivity with the 1918 virus, nearly 90 years after the pandemic. Seven of the eight donor samples tested had circulating B cells that secreted antibodies that bound the 1918 HA. We isolated B cells from subjects and generated five monoclonal antibodies that showed potent neutralizing activity against 1918 virus from three separate donors. These antibodies also cross-reacted with the genetically similar HA of a 1930 swine H1N1 influenza strain, but did not cross-react with HAs of more contemporary human influenza viruses. The antibody genes had an unusually high degree of somatic mutation. The antibodies bound to the 1918 HA protein with high affinity, had exceptional virus-neutralizing potency and protected mice from lethal infection. Isolation of viruses that escaped inhibition suggested that the antibodies recognize classical antigenic sites on the HA surface. Thus, these studies demonstrate that survivors of the 1918 influenza pandemic possess highly functional, virus-neutralizing antibodies to this uniquely virulent virus, and that humans can sustain circulating B memory cells to viruses for many decades after exposure-well into the tenth decade of life.


Asunto(s)
Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Linfocitos B/inmunología , Brotes de Enfermedades , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Sobrevida , Anciano de 80 o más Años , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/genética , Línea Celular , Reacciones Cruzadas/inmunología , Brotes de Enfermedades/historia , Perros , Femenino , Historia del Siglo XX , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Cinética , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Pruebas de Neutralización
9.
Acta Trop ; 253: 107158, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402921

RESUMEN

Tick-borne viruses (TBV) have gained public health relevance in recent years due to the recognition of human-associated fatal cases and the increase in tick-borne disease and transmission. However, many tick species have not been studied for their potential to transmit pathogenic viruses, especially those found in Latin America. To gain better understanding of the tick virome, we conducted targeted amplification using broadly-reactive consensus-degenerate pan-viral targeting viruses from the genera Flavivirus, Bandavirus, Uukuvirus, and Orthonairovirus genus. Additionally, we conducted unbiased metagenomic analyses to investigate the presence of viral RNA sequences in Amblyomma cajennense, A. patinoi and Rhipicephalus microplus ticks collected from a horse slaughter plant in Medellín, Colombia. While no viral products were detected by PCR, results of the metagenomic analyses revealed the presence of viral genomes belonging to the genera Phlebovirus, Bandavirus, and Uukuvirus, including Lihan Tick Virus (LTV), which was previously reported in Rhipicephalus microplus from Colombia. Overall, the results emphasized the enormous utility of the next-generation sequencing in identifying virus genetic diversity presents in ticks and other species of vectors and reservoirs.


Asunto(s)
Virus ARN , Rhipicephalus , Animales , Humanos , Caballos , Rhipicephalus/genética , Amblyomma , Colombia , Viroma/genética
10.
medRxiv ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38352566

RESUMEN

Madariaga virus (MADV) and Venezuelan equine encephalitis virus (VEEV) are emerging arboviruses affecting rural and remote areas of Latin America. However, there are limited clinical and epidemiological reports available, and outbreaks are occurring at an increasing frequency. We addressed this gap by analyzing all the available clinical and epidemiological data of MADV and VEEV infections recorded since 1961 in Panama. A total of 168 of human alphavirus encephalitis cases were detected in Panama from 1961 to 2023. Here we describe the clinical signs and symptoms and epidemiological characteristics of these cases, and also explored signs and symptoms as potential predictors of encephalitic alphavirus infection when compared to those of other arbovirus infections occurring in the region. Our results highlight the challenges clinical diagnosis of alphavirus disease in endemic regions with overlapping circulation of multiple arboviruses.

11.
Cell Host Microbe ; 32(4): 606-622.e8, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38479396

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes acute, subacute, and chronic human arthritogenic diseases and, in rare instances, can lead to neurological complications and death. Here, we combined epidemiological, virological, histopathological, cytokine, molecular dynamics, metabolomic, proteomic, and genomic analyses to investigate viral and host factors that contribute to chikungunya-associated (CHIK) death. Our results indicate that CHIK deaths are associated with multi-organ infection, central nervous system damage, and elevated serum levels of pro-inflammatory cytokines and chemokines compared with survivors. The histopathologic, metabolite, and proteomic signatures of CHIK deaths reveal hemodynamic disorders and dysregulated immune responses. The CHIKV East-Central-South-African lineage infecting our study population causes both fatal and survival cases. Additionally, CHIKV infection impairs the integrity of the blood-brain barrier, as evidenced by an increase in permeability and altered tight junction protein expression. Overall, our findings improve the understanding of CHIK pathophysiology and the causes of fatal infections.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Fiebre Chikungunya/complicaciones , Proteómica , Virus Chikungunya/genética , Citocinas/metabolismo
12.
Emerg Infect Dis ; 19(11): 1839-42, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24210165

RESUMEN

During 2010-2013, we recruited 16 persons with confirmed Mayaro virus infection in the Peruvian Amazon to prospectively follow clinical symptoms and serologic response over a 12-month period. Mayaro virus infection caused long-term arthralgia in more than half, similar to reports of other arthritogenic alphaviruses.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Alphavirus , Alphavirus/genética , Alphavirus/inmunología , Infecciones por Alphavirus/complicaciones , Animales , Artralgia/etiología , Geografía Médica , Humanos , Perú/epidemiología , Prevalencia
13.
Am J Trop Med Hyg ; 109(1): 115-122, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37253447

RESUMEN

Mayaro virus (MAYV) is an arthropod-borne virus (arbovirus) belonging to the family Togaviridae, genus Alphavirus. In recent years, the geographic distribution of MAYV may have expanded north from South and Central America into the Caribbean Islands. Although Haemagogus janthinomys is considered the main vector for MAYV, the virus has also been isolated from other mosquitoes, including Aedes aegypti, a widespread species that serves as the main vector for highly epidemic viruses. Given the possible expansion and outbreaks of MAYV in Latin America, it is possible that MAYV might be adapting to be efficiently transmitted by urban vectors. Therefore, to investigate this possibility, we evaluated the vector competence of Ae. aegypti and Ae. albopictus mosquitoes to transmit MAYV isolated during a year of low or high MAYV transmission. Adult Ae. aegypti and Ae. albopictus were orally infected with the MAYV strains, and the infection, dissemination, and transmission rates were calculated to evaluate their vector competence. Overall, we found higher infection, dissemination, and transmission rates in both Ae. aegypti and Ae. albopictus mosquitoes infected with the strain isolated during a MAYV outbreak, whereas low/no transmission was detected with the strain isolated during a year of low MAYV activity. Our results confirmed that both Ae. aegypti and Ae. albopictus are competent vectors for the emergent MAYV. Our data suggest that strains isolated during MAYV outbreaks might be better fit to infect and be transmitted by urban vectors, raising serious concern about the epidemic potential of MAYV.


Asunto(s)
Aedes , Infecciones por Alphavirus , Alphavirus , Humanos , Animales , Mosquitos Vectores , Infecciones por Alphavirus/epidemiología , Brotes de Enfermedades
14.
Infez Med ; 31(4): 517-532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075419

RESUMEN

Background: Acute undifferentiated febrile illness (AUFI) is one of the leading causes of illness in tropical regions. Although malaria is the most important cause, other pathogens such as Dengue (DENV), Leptospira and recently, Coronavirus Disease 2019 (COVID-19) have gained importance. In Colombia, few studies aimed to identify the etiology of AUFI. Most of them performed in Apartadó and Villeta municipalities, identifying the active circulation of several pathogens. Thus, we conducted a cross-sectional study in these municipalities to characterize the etiologies of AUFI during COVID-19 pandemic. Methods: An active surveillance was conducted between September and December 2021 in local hospitals of Apartadó and Villeta municipalities. Febrile patients were enrolled after voluntarily agreeing to participate in the study. Ten different etiologies were evaluated through direct, serological, molecular and rapid diagnostic methods. Results: In Apartadó a confirmed etiology was found in 60% of subjects, DENV (25%) being the most frequent, followed by leptospirosis (16.7%), malaria (10%), COVID-19 (8.3%), spotted fever group (SFG) rickettsiosis (6.7%) and Chikungunya (1.7%). In Villeta, a specific etiology was confirmed in 55.4% of patients, of which SFG rickettsiosis (39.3%) was the most frequent, followed by leptospirosis (21.4%), DENV (3.6%) and malaria (1.8%). No cases due to Mayaro, Yellow Fever, Oropouche and Venezuelan Equine Encephalitis viruses were detected. Conclusion: We confirm the relevance of dengue fever, leptospirosis, SFG rickettsiosis, COVID-19 and malaria as causes of AUFI in the municipality of Apartadó, and highlight the great importance of SFG rickettsiosis as the main cause of AUFI in the municipality of Villeta.

15.
Clin Biochem ; 101: 19-25, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34933006

RESUMEN

BACKGROUND: Current serological methods for SARS-CoV-2 lack adequate standardization to a universal standard reference material. Standardization will allow comparison of results across various lab-developed and commercial assays and publications. SARS-CoV-2 EURM-017 is human sera reference material containing antibodies directed against SARS-CoV-2 proteins, S1/S2 (full-length spike [S]), S1 receptor-binding domain (S1 RBD), S1, S2, and nucleocapsid (N) protein. The goal of this study was to characterize five antigen-specific serum fractions in EURM-017 for standardization of serology assays. METHODS: Five antigen-specific serum fractions were affinity purified, quantified, and PRNT50 titers compared. Standardization methods were established for two anti-S1 RBD (IgG and Total Ig) and one N protein assay. For the anti-S1 RBD assays, standardization involved determining assay index values for serial dilutions of S1-RBD anti-sera. Index values for the anti-S1 RBD IgG assay and PRNT50 titers were determined for 44 symptomatic COVID-19 patient sera. The index values were converted to EURM-017 ug/mL. RESULTS: Anti-sera protein content was as follows: S1 (17.7 µg/mL), S1 RBD (17.4 µg/mL), S1/S2 (full-length S) (34.1 µg/mL), S2 (29.7 µg/mL), and N protein (72.5 µg/mL). S1 anti-serum had the highest neutralization activity. A standardization method for S1 RBD anti-serum and an anti-S1 RBD IgG assay yielded the linear equation (y = 0.75x-0.10; y = index, x=µg/mL anti-serum). Patient sample index values for the S1-RBD IgG assay correlated well with PRNT50 titers (Pearson r = 0.84). Using the equation above, patient index values were converted to standardized µg/mL. CONCLUSIONS: Standardization of different lab-developed and commercial assays to EURM-017 antigen-specific anti-sera will allow comparison of results across studies globally due to traceability to a single standard reference material.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/normas , COVID-19/diagnóstico , SARS-CoV-2/inmunología , COVID-19/sangre , Prueba Serológica para COVID-19/métodos , Humanos , Inmunoensayo/normas , Inmunoglobulina G/sangre , Estándares de Referencia
16.
Transl Res ; 249: 13-27, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35688318

RESUMEN

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM) adjuvant to SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable systemic humoral and type 1 helper T (Th) cell- mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant challenge. Notably, mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited stronger lung resident T and B cells and IgA responses compared to parenteral vaccination alone, which led to markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant challenge. Overall, our results suggest that mPSM is effective adjuvant for SARS-CoV-2 subunit vaccine in both systemic and mucosal vaccinations.


Asunto(s)
COVID-19 , Vacunas Virales , Adyuvantes Inmunológicos/farmacología , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Mucosa , Inmunoglobulina A , Ratones , Porosidad , SARS-CoV-2 , Silicio/farmacología , Vacunas de Subunidad
17.
Am J Trop Med Hyg ; 107(6): 1218-1225, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36375460

RESUMEN

Several arboviruses have emerged or reemerged into the New World during the past several decades, causing outbreaks of significant proportion. In particular, the outbreaks of Dengue virus (DENV), Zika virus, and Chikungunya virus (CHIKV) have been explosive and unpredictable, and have led to significant adverse health effects. These viruses are considered the leading cause of acute undifferentiated febrile illnesses in Colombia. However, Venezuelan equine encephalitis virus (VEEV) is endemic in Colombia, and arboviruses such as the Mayaro virus (MAYV) and the Oropouche virus (OROV) cause febrile illnesses in neighboring countries. Yet, evidence of human exposure to MAYV and OROV in Colombia is scarce. In this study, we conducted a serosurvey study in healthy individuals from the Cauca Department in Colombia. We assessed the seroprevalence of antibodies against multiple arboviruses, including DENV serotype 2, CHIKV, VEEV, MAYV, and OROV. Based on serological analyses, we found that the overall seroprevalence for DENV serotype 2 was 30%, 1% for MAYV, 2.6% for CHIKV, 4.4% for VEEV, and 2% for OROV. This study provides evidence about the circulation of MAYV and OROV in Colombia, and suggests that they-along with VEEV and CHIKV-might be responsible for cases of acute undifferentiated febrile illnesses that remain undiagnosed in the region. The study results also highlight the need to strengthen surveillance programs to identify outbreaks caused by these and other vector-borne pathogens.


Asunto(s)
Arbovirus , Fiebre Chikungunya , Virus Chikungunya , Infección por el Virus Zika , Virus Zika , Humanos , Estudios Seroepidemiológicos , Colombia/epidemiología , Anticuerpos Antivirales , Infección por el Virus Zika/epidemiología , Fiebre
18.
Proc Natl Acad Sci U S A ; 105(8): 3064-9, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18287069

RESUMEN

The 1918 influenza pandemic was exceptionally severe, resulting in the death of up to 50 million people worldwide. Here, we show which virus genes contributed to the replication and virulence of the 1918 influenza virus. Recombinant viruses, in which genes of the 1918 virus were replaced with genes from a contemporary human H1N1 influenza virus, A/Texas/36/91 (Tx/91), were generated. The exchange of most 1918 influenza virus genes with seasonal influenza H1N1 virus genes did not alter the virulence of the 1918 virus; however, substitution of the hemagglutinin (HA), neuraminidase (NA), or polymerase subunit PB1 genes significantly affected the ability of this virus to cause severe disease in mice. The 1918 virus virulence observed in mice correlated with the ability of 1918 recombinant viruses to replicate efficiently in human airway cells. In a second series of experiments, eight 1918 1:7 recombinants were generated, in which each Tx/91 virus gene was individually replaced by a corresponding gene from 1918 virus. Replication capacity of the individual 1:7 reassortant viruses was assessed in mouse lungs and human airway cells. Increased virus titers were observed among 1:7 viruses containing individual 1918 HA, NA, and PB1 genes. In addition, the 1918 PB1:Tx/91 (1:7) virus showed a distinctly larger plaque size phenotype than the small plaque phenotype of the 1918 PA:Tx/91 and 1918 PB2:Tx/91 1:7 reassortants. These results highlight the importance of the 1918 HA, NA, and PB1 genes for optimal virus replication and virulence of this pandemic strain.


Asunto(s)
Hemaglutininas Virales/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/historia , Neuraminidasa/genética , Proteínas Virales/genética , Replicación Viral/genética , Animales , Femenino , Historia del Siglo XX , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Virulencia
19.
bioRxiv ; 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34845456

RESUMEN

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM)-adjuvanted SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable SARS-CoV-2-specific systemic humoral and type 1 helper T (Th) cell-mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant infection. mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited potent systemic and lung resident memory T and B cells and SARS-CoV-2 specific IgA responses, and markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant infection. Our results suggest that mPSM can serve as potent adjuvant for SARS-CoV-2 subunit vaccine which is effective for systemic and mucosal vaccination.

20.
Am J Trop Med Hyg ; 106(2): 607-609, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34844213

RESUMEN

Mayaro virus (MAYV) is an alphavirus endemic to both Latin America and the Caribbean. Recent reports have questioned the ability of MAYV and its close relative, Chikungunya virus (CHIKV), to generate cross-reactive, neutralizing antibodies to one another. Since CHIKV was introduced to South America in 2013, discerning whether individuals have cross-reactive antibodies or whether they have had exposures to both viruses previously has been difficult. Using samples obtained from people infected with MAYV prior to the introduction of CHIKV in the Americas, we performed neutralizing assays and observed no discernable neutralization of CHIKV by sera from patients previously infected with MAYV. These data suggest that a positive CHIKV neutralization test cannot be attributed to prior exposure to MAYV and that previous exposure to MAYV may not be protective against a subsequent CHIKV infection.


Asunto(s)
Infecciones por Alphavirus/diagnóstico , Infecciones por Alphavirus/epidemiología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Alphavirus/inmunología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/virología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Virus Chikungunya/inmunología , Reacciones Cruzadas , Humanos , Sueros Inmunes/química , Pruebas de Neutralización , Perú/epidemiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda