Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
2.
J Med Entomol ; 61(1): 74-86, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38041868

RESUMEN

Females of some mosquito species are anthropophilic, as they feed on human blood to support egg production and, hence, are forensically valuable if found at a crime scene. The present study investigated the blood meal digestion process in Culex pipiens L. both with and without heroin and proposed a method for estimating the post-feeding interval (PFI). Mosquitoes were fed on a control mouse, a heroin-injected mouse, or in vitro heroin-treated mouse blood. The blood meal digestion was then investigated at different hours post-feeding. Data showed that the blood meal size ingested by control mosquitoes was 0.681 ±â€…0.04 mg/mosquito and was completely digested within 45 h post-feeding. An estimation of the PFI was proposed in terms of the rate of hemoglobin (Hb) digestion. The blood meal size of the mosquitoes fed on the in vitro heroin-treated blood and the heroin-injected mouse was 0.96 ±â€…0.06 and 0.79 ±â€…0.01 mg/mosquito and was completely digested within 50 and 55 h post-feeding, respectively. The digestion of Hb started similarly in all experimental mosquitoes until 10 h post-feeding, after which it significantly decreased in heroin-treated blood meals compared with the control ones. This may suggest that heroin impacted the digestion process, as it took an extra 5-10 h to complete. These findings could be valuable in the forensic context since an estimation of PFI is proposed as a potential estimation of the postmortem interval (PMI). However, care should be taken as heroin in the host blood has significantly impacted the overall digestion process and, hence, may bias the PFI/PMI estimation.


Asunto(s)
Culex , Culicidae , Alcaloides Opiáceos , Animales , Femenino , Ratones , Digestión , Conducta Alimentaria , Heroína , Comidas , Mosquitos Vectores
3.
J Med Entomol ; 61(4): 877-890, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38493302

RESUMEN

This study aimed to explore the rate of decomposition of rabbit carcasses and the succession pattern of the associated dipteran flies outdoor, indoor, and on the roof of a 4-story building during the summer and winter. A total of 6,069 flies were recorded, with 30.91% reported as 2 waves outdoor and on the roof in the summer and 69.09% as 4 waves outdoor in the winter. The roof showed the most flies in the summer but the least in the winter, whereas the outdoor showed the most in the winter but the least in the summer. The ground and first floors showed the most indoor flies, while the second and third floors showed the least in both seasons. Indoor carcasses decomposed slower than those outdoor, and those on the second and third floors decomposed slower than those on the ground and first floors. Ten fly species from 8 families were identified in the winter, compared to 6 from 5 families in the summer. The most abundant species was Musca domestica Linnaeus (Muscidae) on the roof in the summer, while it was Chrysomya albiceps (Wiedemannn) (Calliphoridae) outdoor in the winter. The rare species (singletons) were Musca sp. (Muscidae) and Megaselia scalaris (Loew) (Phoridae) on the first floor in both seasons, Scaptomyza pallida (Zetterstedt) (Drosophilidae) on the ground floor in the summer, and Atherigona orientalis Schiner (Muscidae) outdoor in the winter. These data highlight the variance in carcass decomposition and fly composition across outdoor, indoor, and the roof of human dwellings, which could be of forensic importance.


Asunto(s)
Dípteros , Entomología Forense , Estaciones del Año , Animales , Dípteros/fisiología , Conejos , Calliphoridae/crecimiento & desarrollo , Cambios Post Mortem , Cadáver
4.
J Med Entomol ; 61(2): 318-330, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38104252

RESUMEN

The current study was carried out in the seaward coastal beach environment of Al-Jubail City, Saudi Arabia, to analyze the rabbit carcass decomposition process, the succession pattern of associated ants, and their potential utility in forensic investigation. Experiments were conducted over a 4-season course (from autumn 2018 to summer 2019). A total of 9 species belonging to the 2 subfamilies, Myrmicinae and Formicinae, were recorded. The myrmicine species were Crematogaster aegyptiaca Mayr, 1862; Messor ebeninus Santschi, 1927; Messor foreli Santschi, 1923; and Monomorium abeillei Andre, 1881. The formicine species were Camponotus xerxes Forel, 1904; Cataglyphis albicans (Roger, 1859); Cataglyphis hologerseniCollingwood & Agosti, 1996; Cataglyphis viaticoides (André, 1881); and Nylanderia jaegerskioeldi (Mayr, 1904). M. abeillei was the only species recorded in all 4 seasons, while M. abeillei and C. albicans were the dominant species in summer and C. aegyptiaca and C. albicans in spring. Diversity was lowest in the autumn, with only 4 species recorded. The COI gene sequences of 5 species have been successfully deposited in the GenBank database for the first time. In total, 4 carcass decomposition stages were observed, with the longest duration in winter (13 days), the shortest in summer (11 days), and in between for both autumn and spring. Most ant species were present during both decay and dry stages, while M. abeillei, C. aegyptiaca, M. ebeninus, and C. albicans were observed in all decomposition stages. These data may indicate that ants on this coastal beach showed seasonal and geographical succession patterns that could be taken into consideration in forensic investigations.


Asunto(s)
Hormigas , Conejos , Animales , Arabia Saudita , Cadáver
5.
Int J Med Microbiol ; 303(8): 475-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23891276

RESUMEN

Avian pathogenic Escherichia coli (APEC) causes extensive mortality in poultry flocks, leading to extensive economic losses. To date, little information is available on the molecular basis of antimicrobial resistance in APEC in Africa. Therefore, the objective of this study was to characterize the virulence and antimicrobial resistance of multidrug-resistant APEC isolated from septicemic broilers in Egypt at the molecular level. Among 91 non-repetitive E. coli isolates, 73 (80.2%) carried three or more of the APEC virulence genes iroN, ompT, iss, iutA, and hlyF. All 73 APEC isolates showed multidrug resistance phenotypes, particularly against ampicillin, tetracycline, spectinomycin, streptomycin, kanamycin, and trimethoprim/sulfamethoxazole. PCR and DNA sequencing identified class 1 and class 2 integrons in 34 (46.6%) and seven (9.6%) isolates, respectively. The ß-lactamase-encoding genes, bla(TEM-1), bla(TEM-104), bla(CMY-2), bla(OXA-30), bla(CTX-M-15), and bla(SHV-2); tetracycline resistance genes, tet(A), tet(B), tet(C), tet(D), and tet(E); the plasmid-mediated quinolone resistance genes, qnrA1, qnrB2, qnrS1, and aac(6')-Ib-cr, and florfenicol resistance gene, floR, were also identified in 69 (94.5%), 67 (91.8%), 47 (64.4%), and 13 (17.8%) isolates, respectively. To the best of our knowledge, this is the first report of molecular characterization of antimicrobial resistance in APEC strains from Africa.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli/veterinaria , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Enfermedades de las Aves de Corral/microbiología , Sepsis/veterinaria , Animales , Antibacterianos/farmacología , ADN Bacteriano/química , ADN Bacteriano/genética , Egipto , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Genotipo , Pruebas de Sensibilidad Microbiana , Plásmidos , Reacción en Cadena de la Polimerasa , Sepsis/microbiología , Análisis de Secuencia de ADN , Factores de Virulencia/genética
6.
J Med Entomol ; 60(1): 40-50, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36354264

RESUMEN

The current study investigates the postmortem successional patterns of necrophagous dipteran insects and the rabbit carcass decomposition rate upon envenomation with snake venom. In total, 15 rabbits, Oryctolagus cuniculus domesticus L. (Lagomorpha, Leporidae), were divided into 3 groups (5 rabbits each; n = 5); the first and second groups were injected with lethal doses of venoms from the Egyptian cobra, Naja haje L. (Squamata, Elapidae), and the horned viper, Cerastes cerastes L. (Squamata, viperidae), respectively. The third group (control) was injected with 0.85% physiological saline and euthanized with CO2. The carcass decomposition stages: fresh, bloating, decay, and dry were recorded and monitored. Data revealed that envenomation shortened the decomposition process by 3 d, 20% shorter than the control. The overall succession pattern of fly species revealed a lower abundance during the fresh stage, which peaked during the decay stage, and declined to the minimum number in the dry stage at the end of the 15-d experimental duration. A total of 2,488 individual flies, belonging to 21 species of 10 families, were collected from all experimental carcasses. The Calliphoridae, Muscidae, and Sarcophagidae were the most abundant and diverse families, whereas the other seven families were rare and least abundant. Although C. cerastes venom was significantly less lethal than N. haje, it showed a faster carcass decomposition process and a higher impact on fly abundance. These data showed that envenomation impacts insect succession and carcass decomposition, which should be taken into account when using insects in forensic investigations since envenomation with snake venoms is one of the leading causes of death worldwide.


Asunto(s)
Dípteros , Venenos de Serpiente , Conejos , Animales , Insectos , Dípteros/fisiología , Cadáver
7.
Int J Food Microbiol ; 391-393: 110146, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36842253

RESUMEN

The global spread of antimicrobial resistance (AMR) is alarming. Escherichia coli is a Gram-negative bacterium that causes healthcare-associated infections and is a major threat to public health. Currently, no comprehensive antimicrobial surveillance of multidrug-resistant E. coli of diverse phylogroups along the meat value chain has been implemented in Higashihiroshima, Japan. Therefore, by employing the One Health approach, 1183 bacterial isolates, including 303 recovered from meat samples in 2009, were screened for the presence of antimicrobial resistance determinants using multiplex PCR and DNA sequencing techniques. Seventy-seven non-duplicate E. coli isolates that harbored AMR genes were subjected to antimicrobial susceptibility testing and the detection of integrons. Phylogenetic characterization, which has not been previously investigated, was used to assign E. coli to one of the eight phylogroups. Twenty-six out of 33 (78.8%) and 34 out of 44 (77.3%) E. coli isolates from 2009 and 2021 exhibited multidrug resistance (MDR) phenotypes, respectively. The most common clinical resistance was observed against ampicillin, tetracycline, kanamycin, sulfamethoxazole/trimethoprim, cefotaxime, and chloramphenicol. Overall, 22.1% (17/77) of the E. coli isolates carried extended-spectrum ß-lactamase (ESBL)-encoding genes and showed the ESBL-resistant phenotypes. For the two isolation years, AmpC/ESBL prevalence decreased from 42.4% in 2009 to 20.5% in 2021. The identified AMR genes included blaCTX-M-1, blaCTX-M-2, blaCTX-M-14, blaCTX-M-15, and blaSHV-12 (ESBL-types); blaSHV-1, blaTEM-1, blaTEM-135, and blaTEM-176 (narrow-spectrum types); blaCMY-4, blaADC-32, blaADC-216, blaACT-48, and blaACT-51 (AmpC types); and integrons. All E. coli isolates were negative for carbapenemase-encoding genes, whereas one isolate from 2009 carried mcr-5.1 allele. Approximately 52% of E. coli isolates identified in 2009 were assigned to phylogroup A compared to the 20.5% in 2021. Notably, the highest proportions of E. coli phylogroups exhibiting MDR were groups A, B1, and F, suggesting that members of these groups are mostly associated with drug resistance. This study highlights the role of meat as a significant reservoir of MDR E. coli and potential source for transmission of AMR genes. Our findings emphasize the importance of continuous monitoring to track the changes in the spread of antimicrobial resistance in the food chain.


Asunto(s)
Antiinfecciosos , Infecciones por Escherichia coli , Humanos , Escherichia coli/genética , Antibacterianos/farmacología , Infecciones por Escherichia coli/microbiología , Filogenia , Japón , Farmacorresistencia Bacteriana/genética , beta-Lactamasas/genética , Carne/microbiología
8.
Microbiol Immunol ; 56(4): 254-61, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22500933

RESUMEN

To date, no information has been available on the molecular bases of antimicrobial resistance in Salmonella spp. from poultry in Egypt or even in Africa. Therefore, the objective of this study was to analyze, at the molecular level, the mechanisms of multidrug-resistance in isolates of Salmonella recovered from diseased broilers in Egypt. Twenty-one Salmonella isolates were identified; 13 of these isolates were Salmonella enterica serovar Enteritidis and eight Salmonella enterica serovar Typhimurium. 17 (81%). Salmonella isolates displayed multidrug resistance phenotypes, particularly against ampicillin, streptomycin, spectinomycin, kanamycin, tetracycline, chloramphenicol, and trimethoprim/sulfamethoxazole. PCR and DNA sequencing identified class 1 integrons in nine (42.9%) isolates and class 2 integrons in three (14.3%) isolates. The identified resistance genes within class 1 integrons were aminoglycoside adenyltransferase type A, aadA1, aadA2 and aadA5 and dihydrofolate reductase type A, dfrA1, dfrA5, dfrA12, dfrA15 and dfrA17. The ß-lactamase encoding genes bla(TEM-1) and bla(CMY-2) and florfenicol resistance gene floR were also identified. Furthermore, the tetracycline resistance gene tet(A) was identified in 14 (66.7%) Salmonella isolates. To the best of our knowledge, this is the first report of the molecular basis of antimicrobial resistance in Salmonella spp. isolated from poultry in Africa.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Genes Bacterianos , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Salmonella enteritidis/genética , Salmonella typhimurium/genética , Animales , Antibacterianos/farmacología , Pollos , ADN Bacteriano/química , ADN Bacteriano/genética , Egipto , Integrones , Reacción en Cadena de la Polimerasa , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/aislamiento & purificación , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/aislamiento & purificación , Análisis de Secuencia de ADN
9.
Ther Clin Risk Manag ; 18: 391-398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431548

RESUMEN

Background: Five-medication regimen is recommended for patients after acute coronary syndrome (ACS) as a secondary prevention strategy at discharge to reduce recurrence and improve mortality. Objective: This study aimed to assess prescribing of optimal medical therapy (OMT) as five-medication regimens for secondary prevention at discharge after ACS in Sudan. Methods: A retrospective cohort study was performed at a tertiary hospital located in Wad Medani, Sudan, in the period between January and December 2019. Data were collected from patients' files. OMT was defined as a combination of five medications; aspirin and P2Y12 inhibitors, statins, beta-blockers (BBs), and angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers (ARBs) or if a valid contraindication was documented. Results: Of the 619 patients throughout the study period, 591 were selected based on inclusion and exclusion criteria. The median age of patients was 60 years, and 58.9% of patients were male. Diabetes (44.5%) and hypertension (42%) were the most common risk factors. Most patients (58.4%) were diagnosed with ST-segment elevation myocardial infarction. About 99.7% of patients were on aspirin, 99.5% on statins, 97% on clopidogrel, 96.8% on dual antiplatelet therapy, 70.4% on BBs, and 57.9% on ACEIs/ARBs. OMT for secondary prevention was prescribed to 267 (45.2%) patients with ACS at discharge. Conclusion: Although prescriptions for all five guideline-recommended medications after ACS were suboptimal, the study showed a positive trend in prescribing most individual medications.

10.
Insects ; 13(11)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36421950

RESUMEN

Plant based insecticides are considered among the most economic and ecofriendly chemicals for the protection of plants and stored grains. The cowpea weevil (Callosbruchus maculatus) causes more than 90% damage to sored grains in three to six months. The current study investigates insecticidal potentials of five selected botanicals: Melia azedarach, Nicotiana rustica, Azadirachta indica, Nicotiana tabacum and Thuja orientalis. They are explored at six different concentrations (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0%) against C. maculatus and compared to effects of distilled water which is used as a control. Toxicities of 3%(V/V) extracts of N. tabacum, N. rustica, A. indica and T. orientalis against C. maculatus were 100%, 86.11%, 80.56% and 72.22%, respectively. Maximum mortality was caused by N. tabacum and N. rustica (100%), followed by A. indica (82%), whereas minimum mortality was observed in T. orientalis (64%) at 2.5%. Several phytochemicals, alkaloids, saponins, diterphenes, phytosterol, flavonoids and phenols were identified in N. tabacum and N. rustica, while few were present in A. indica. Phytosterol was present in greatest abundance. Saponins were only detected in aqueous extracts of N. rustica and N. tabacum. Taken together, these results indicate the utility of N. tabacum, N. rustica and A. indica as potential botanicals to control pest beetle and cowpea weevil.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36310621

RESUMEN

Jambosa caryophyllus has been used in traditional phytotherapy as a treatment against infections. In the present work, essential oils extracted from clove buds (Jambosa caryophyllus ) (EO-JC) were investigated for their composition, antifungal, and insecticidal properties. Extraction of EO-JC was performed by use of hydrodistillation using a Clevenger-type apparatus, and the EOs were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Antifungal activity of EO-JC was evaluated by the use of solid-state diffusion (disc method) and microdilution to determine the minimum inhibitory concentration (MIC), against three strains of fungus, Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum. Insecticidal activity of EO-JC against the cowpea weevil, Callosobruchus maculatus, was determined to assess utility of EO-JC to control this pest. Several exposures including inhalation and contact were used to determine lethality, as well as the repulsion test was conducted at concentrations of 4, 8, 16, and 32 µL EO-JC. Characterization of EO-JC by GC/MS revealed 34 compounds accounting for 99.98% of the mass of the extract. The predominant compound was eugenol (26.80%) followed by ß-caryophyllene (16.03%) and eugenyl acetate (5.83%). The antifungal activity of EO-JC on solid media exhibited inhibitions in the range of 49% to 87%, and MIC was between 3.125 and 7.80 µg EO-JC/mL. Insecticidal activity, as determined by the use of the inhalation test, and expressed as the LD50 and LD95 after 96 hours of exposure was 2.32 and 21.92 µL/L air, respectively. In the contact test, a 96-hour exposure resulted in LD50 and LD95 of 5.51 and 11.05 µL/L of air, respectively. EO-JC exhibited insecticidal activity against fungi and pest chickpea weevil.

14.
Microbiol Immunol ; 55(5): 318-27, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21338385

RESUMEN

The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the ß-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Bacterias Gramnegativas/efectos de los fármacos , Mastitis Bovina/microbiología , Animales , Bovinos , ADN Bacteriano/genética , Egipto , Femenino , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Integrones , Pruebas de Sensibilidad Microbiana , Plásmidos/efectos de los fármacos , Reacción en Cadena de la Polimerasa
15.
J Insect Sci ; 11: 176, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22958070

RESUMEN

The present study aimed to identify the mosquito vectors distributed throughout AL-Ahsaa district situated in the eastern region of Saudi Arabia. Mosquito larvae were collected seasonally for one year (October 2009 to September 2010) from different breeding sites in seven rural areas utilizing long aquatic nets. Salinity and pH of these breeding sites were also measured seasonally. The survey revealed the presence of five mosquito species, Aedes caspius Pallas (Diptera: Culicidae), Anopheles multicolor Cambouliu, Culex perexiguus Theobald, Culex pipiens L., and Culex pusillus Macquart, representing three genera; four of them (Ae. caspius, An. multicolor, Cx. perexiguus, and Cx. pipiens) are important vectors of diseases. Ae. caspius is the most common vector followed by Cx. pipiens and then Cx. perexiguus. Mosquitoes in AL-Ahsaa are prevalent in both winter and spring seasons, rarely encountered in summer, and are found in moderation during the autumn months. These results are compared with results of other regions in the Kingdom of Saudi Arabia.


Asunto(s)
Culicidae , Insectos Vectores , Animales , Control de Insectos , Larva , Arabia Saudita
16.
Int J Food Microbiol ; 351: 109268, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34098467

RESUMEN

The increase in multidrug-resistant Salmonella enterica and its spread from food to humans are considered a serious public health concern worldwide. Little is currently known about the prevalence of extended-spectrum ß-lactamase (ESBL)-producing S. enterica in fish in Africa. Therefore, this study aimed to investigate the existence of ESBL-producing S. enterica in retail fish in Egypt. In total, 200 fish samples were collected randomly from various retail fish markets in Egypt. S. enterica were detected in 19 (9.5%; 95% CI: 5.8-14.4) of the fish samples analyzed. Of the 19 non-repetitive S. enterica isolates, 18 were serologically categorized into eight S. enterica serovars and a non-typable serovar. All 19 S. enterica isolates (100%) showed multidrug-resistant phenotypes to at least three classes of antimicrobials, and 11 (57.9%) exhibited an ESBL-resistant phenotype and harbored at least one ESBL-encoding gene. The ESBL-producing S. enterica serovars were as follows: Kentucky (3 isolates; 15.8%), Enteritidis (2 isolates; 10.5%), Typhimurium (2 isolates; 10.5%), and 1 isolate (5.3%) each of Infantis, Virchow, Paratyphi B, and Senftenberg. The identified ß-lactamase-encoding genes included ESBL-encoding genes blaCTX-M-3, blaCTX-M-14, blaCTX-M-15, blaSHV-1, blaSHV-2 and blaSHV-12; the AmpC ß-lactamase-encoding gene blaCMY-2; and the narrow-spectrum ß-lactamase-encoding genes blaTEM-1 and blaOXA-1. All S. enterica isolates were negative for carbapenemase-encoding genes. Molecular analysis of plasmid transferability and replicon typing revealed that most plasmids (with ß-lactamase-encoding genes) were transferrable, and the most common incompatibility groups were IncI1, IncA/C, IncHI1, and IncN. To the best of our knowledge, this is the first report for molecular characterization of ESBL-producing S. enterica in fish in Egypt. The occurrence of ESBL-producing S. enterica in retail fish constitutes a potential public health threat with the possibility of transmission of these strains with resistance genes to humans. Such transmission would exacerbate the resistance to an important class of antibiotics commonly used in hospitals to treat typhoid and non-typhoidal Salmonella infections.


Asunto(s)
Peces/microbiología , Salmonelosis Animal/microbiología , Salmonella enterica/metabolismo , beta-Lactamasas/metabolismo , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Egipto/epidemiología , Humanos , Plásmidos/genética , Prevalencia , Salud Pública , Salmonelosis Animal/epidemiología , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , beta-Lactamasas/genética
17.
Antibiotics (Basel) ; 10(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34356803

RESUMEN

The emergence and spread of multidrug-resistant Salmonella enterica (S. enterica) to humans through food of animal origin are considered a major global public health concern. Currently, little is known about the prevalence of important antimicrobial resistance genes in S. enterica from retail food in Africa. Therefore, the screening and characterization of the extended-spectrum ß-lactamase (ESBL) and plasmid-mediated quinolone resistance (PMQR) genes in S. enterica isolated from retail meats and slaughterhouses in Egypt were done by using PCR and DNA sequencing techniques. Twenty-eight out of thirty-four (82.4%) non-duplicate S. enterica isolates showed multidrug-resistance phenotypes to at least three classes of antimicrobials, and fourteen (41.2%) exhibited an ESBL-resistance phenotype and harbored at least one ESBL-encoding gene. The identified ß-lactamase-encoding genes included blaCTX-M-1, blaCTX-M-3, blaCTX-M-13, blaCTX-M-14, blaCTX-M-15, and blaSHV-12 (ESBL types); blaCMY-2 (AmpC type); and blaTEM-1 and blaOXA-1 (narrow-spectrum types). PMQR genes (included qnrA, qnrB, qnrS, and aac(6')-Ib-cr) were identified in 23 (67.6%) isolates. The presence of ESBL- and PMQR-producing S. enterica with a high prevalence rate in retail meats and slaughterhouses is considered a major threat to public health as these strains with resistance genes could be transmitted to humans through the food chain.

18.
Animals (Basel) ; 11(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201226

RESUMEN

The present study was designed to investigate the presence of genes that conferred resistance to antimicrobials among Enterobacteriaceae that were isolated from diarrhoeic calves. A total of 120 faecal samples were collected from diarrhoeic calves that were raised in Kafr El-Sheikh governorate, Egypt. The samples were screened for Enterobacteriaceae. A total of 149 isolates of bacteria were recovered and identified; Escherichia coli was found to be the most overwhelming species, followed by Citrobacter diversus, Shigella spp., Serratia spp., Providencia spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Klebsiella oxytoca, and Morganella morganii. All isolates were tested for susceptibility to 12 antimicrobials; resistant and intermediately resistant strains were screened by conventional polymerase chain reaction for the presence of antimicrobial resistance genes. Of the 149 isolates, 37 (24.8%) exhibited multidrug resistant phenotypes. The most prevalent multidrug resistant species were E. coli, C. diversus, Serratia spp., K. pneumoniae, Shigella spp., Providencia spp., and K. oxytoca. Class 1 integrons were detected in 28 (18.8%) isolates. All isolates were negative for class 2 integrons. The blaTEM gene was identified in 37 (24.8%) isolates, whereas no isolates carried the blaCTX-M gene. The florfenicol gene (floR) was detected in two bacterial isolates (1.3%). The findings of this study reveal that calves may act as potential reservoirs of multidrug resistant bacteria that can be easily transmitted to humans.

19.
Saudi J Biol Sci ; 28(3): 1528-1538, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33732036

RESUMEN

Keeping honeybees healthy is essential, as bees are not only important for honey production but also cross-pollination of agricultural and horticultural crops; therefore, bees have a significant economic impact worldwide. Recently, the lethal disease, the American foulbrood (AFB), caused great losses of honeybee and decline of global apiculture. Recent studies have focused on using natural insect-derived antibiotics to overcome recently emerged AFB-resistance to conventional antibiotics. In support of these studies, here we investigate the possibility of producing bee-derived anti-AFB antibiotics from an indigenous honeybee, Apis mellifera jemenitica. The immune responses of the third instar stage were first induced against the standards Micrococcus luteus and Escherichia coli compared with the indigenous Paenibacillus larvae (ksuPL5). Data indicated a strong immune response against M. luteus, E. coli and P. larvae 24 h post-P. larvae-injection as revealed by the detection of lysozyme-like, cecropin-like and prophenoloxidase (PO) activities in the plasma of P. larvae-injected third instars. Nodulation activity against injected P. larvae as early as 4 h and peaking 48 h post-P. larvae injection were observed. Potentially active anti-P. larvae immune peptide fractions purified by high-performance liquid chromatography (HPLC) showed significant in vivo therapeutic effects on P. larvae-infected first instars. Mass spectrophotometric analysis and Orbitrap measurements of P. larvae-injected plasma indicated the expression of PO (Mr: 80 kDa), beta-1,3-glucan-binding protein (Mr: 52 kDa) and serine protease 44 isoform X1 (Mr: 46 kDa). This suggests that one or all of these immune peptides contribute to significant survivorship of P. larvae-infected broods, and could be a valuable clue in the search for honeybee-derived anti-AFB natural therapeutic agents. Further molecular characterization and description of the functional roles of these predicted antimicrobial peptides from both broods and adult honeybee may enrich the arsenal of insect-derived antibiotics of therapeutic purposes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda