Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 163(3): 535-7, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496596

RESUMEN

Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles.


Asunto(s)
Evolución Molecular , Mesorhizobium/metabolismo , Mapas de Interacción de Proteínas
2.
Mol Biol Evol ; 38(2): 545-556, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32956445

RESUMEN

Many enzymes that catalyze protein post-translational modifications can specifically modify multiple target proteins. However, little is known regarding the molecular basis and evolution of multispecificity in these enzymes. Here, we used a combined bioinformatics and experimental approaches to investigate the evolution of multispecificity in the sirtuin-1 (SIRT1) deacetylase. Guided by bioinformatics analysis of SIRT1 orthologs and substrates, we identified and examined important amino acid substitutions that have occurred during the evolution of sirtuins in Metazoa and Fungi. We found that mutation of human SIRT1 at these positions, based on sirtuin orthologs from Fungi, could alter its substrate specificity. These substitutions lead to reduced activity toward K382 acetylated p53 protein, which is only present in Metazoa, without affecting the high activity toward the conserved histone substrates. Results from ancestral sequence reconstruction are consistent with a model in which ancestral sirtuin proteins exhibited multispecificity, suggesting that the multispecificity of some metazoan sirtuins, such as hSIRT1, could be a relatively ancient trait.


Asunto(s)
Evolución Molecular , Sirtuina 1/genética , Sustitución de Aminoácidos , Biología Computacional/métodos , Sirtuina 1/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(45): E9549-E9558, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078300

RESUMEN

Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold.


Asunto(s)
Nitrorreductasas/genética , Biología Computacional/métodos , Evolución Molecular , Mononucleótido de Flavina/genética , Modelos Moleculares , Filogenia
4.
Biochemistry ; 58(22): 2617-2627, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31074977

RESUMEN

A 4-oxalocrotonate tautomerase (4-OT) trimer has been isolated from Burkholderia lata, and a kinetic, mechanistic, and structural analysis has been performed. The enzyme is the third described oligomer state for 4-OT along with a homo- and heterohexamer. The 4-OT trimer is part of a small subset of sequences (133 sequences) within the 4-OT subgroup of the tautomerase superfamily (TSF). The TSF has two distinct features: members are composed of a single ß-α-ß unit (homo- and heterohexamer) or two consecutively joined ß-α-ß units (trimer) and generally have a catalytic amino-terminal proline. The enzyme, designated as fused 4-OT, functions as a 4-OT where the active site groups (Pro-1, Arg-39, Arg-76, Phe-115, Arg-127) mirror those in the canonical 4-OT from Pseudomonas putida mt-2. Inactivation by 2-oxo-3-pentynoate suggests that Pro-1 of fused 4-OT has a low p Ka enabling the prolyl nitrogen to function as a general base. A remarkable feature of the fused 4-OT is the absence of P3 rotational symmetry in the structure (1.5 Å resolution). The asymmetric arrangement of the trimer is not due to the fusion of the two ß-α-ß building blocks because an engineered "unfused" variant that breaks the covalent bond between the two units (to generate a heterohexamer) assumes the same asymmetric oligomerization state. It remains unknown how the different active site configurations contribute to the observed overall activities and whether the asymmetry has a biological purpose or role in the evolution of TSF members.


Asunto(s)
Proteínas Bacterianas/química , Isomerasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Burkholderia/enzimología , Dominio Catalítico , Ácidos Grasos Insaturados/química , Isomerasas/genética , Isomerasas/aislamiento & purificación , Cinética , Modelos Químicos , Mutación , Estructura Cuaternaria de Proteína , Pseudomonas putida/enzimología , Alineación de Secuencia
5.
J Biol Chem ; 293(7): 2342-2357, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29184004

RESUMEN

The tautomerase superfamily (TSF) consists of more than 11,000 nonredundant sequences present throughout the biosphere. Characterized members have attracted much attention because of the unusual and key catalytic role of an N-terminal proline. These few characterized members catalyze a diverse range of chemical reactions, but the full scale of their chemical capabilities and biological functions remains unknown. To gain new insight into TSF structure-function relationships, we performed a global analysis of similarities across the entire superfamily and computed a sequence similarity network to guide classification into distinct subgroups. Our results indicate that TSF members are found in all domains of life, with most being present in bacteria. The eukaryotic members of the cis-3-chloroacrylic acid dehalogenase subgroup are limited to fungal species, whereas the macrophage migration inhibitory factor subgroup has wide eukaryotic representation (including mammals). Unexpectedly, we found that 346 TSF sequences lack Pro-1, of which 85% are present in the malonate semialdehyde decarboxylase subgroup. The computed network also enabled the identification of similarity paths, namely sequences that link functionally diverse subgroups and exhibit transitional structural features that may help explain reaction divergence. A structure-guided comparison of these linker proteins identified conserved transitions between them, and kinetic analysis paralleled these observations. Phylogenetic reconstruction of the linker set was consistent with these findings. Our results also suggest that contemporary TSF members may have evolved from a short 4-oxalocrotonate tautomerase-like ancestor followed by gene duplication and fusion. Our new linker-guided strategy can be used to enrich the discovery of sequence/structure/function transitions in other enzyme superfamilies.


Asunto(s)
Enzimas/química , Enzimas/metabolismo , Eucariontes/enzimología , Familia de Multigenes , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Enzimas/genética , Eucariontes/química , Eucariontes/clasificación , Eucariontes/genética , Evolución Molecular , Humanos , Cinética , Datos de Secuencia Molecular , Filogenia , Plantas/química , Plantas/enzimología , Plantas/genética , Alineación de Secuencia
6.
Biochemistry ; 57(31): 4651-4662, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30052428

RESUMEN

The rapidly expanding number of protein sequences found in public databases can improve our understanding of how protein functions evolve. However, our current knowledge of protein function likely represents a small fraction of the diverse repertoire that exists in nature. Integrative computational methods can facilitate the discovery of new protein functions and enzymatic reactions through the observation and investigation of the complex sequence-structure-function relationships within protein superfamilies. Here, we highlight the use of sequence similarity networks (SSNs) to identify previously unexplored sequence and function space. We exemplify this approach using the nitroreductase (NTR) superfamily. We demonstrate that SSN investigations can provide a rapid and effective means to classify groups of proteins, therefore exposing experimentally unexplored sequences that may exhibit novel functionality. Integration of such approaches with systematic experimental characterization will expand our understanding of the functional diversity of enzymes and their associated physiological roles.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Secuencia de Aminoácidos , Biología Computacional/métodos , Evolución Molecular , Nitrorreductasas/química , Nitrorreductasas/metabolismo , Proteínas/metabolismo , Relación Estructura-Actividad
7.
PLoS Biol ; 12(4): e1001843, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24756107

RESUMEN

The cytosolic glutathione transferase (cytGST) superfamily comprises more than 13,000 nonredundant sequences found throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs, we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for 82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences among them likely to be associated with evolution of this unusual reaction. Interactive versions of the networks, associated with functional and other types of information, can be downloaded from the Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu).


Asunto(s)
Glutatión Transferasa/genética , Glutatión Transferasa/ultraestructura , Modelos Moleculares , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Biología Computacional , Bases de Datos de Proteínas , Glutatión/química , Estructura Terciaria de Proteína , Alineación de Secuencia , Relación Estructura-Actividad
8.
Nature ; 481(7381): 365-70, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22190034

RESUMEN

Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host's cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV-human protein-protein interactions involving 435 individual human proteins, with ∼40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.


Asunto(s)
VIH-1/química , VIH-1/metabolismo , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/fisiología , Marcadores de Afinidad , Secuencia de Aminoácidos , Secuencia Conservada , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Células HEK293 , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Proteasa del VIH/metabolismo , VIH-1/fisiología , Proteínas del Virus de la Inmunodeficiencia Humana/análisis , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas del Virus de la Inmunodeficiencia Humana/aislamiento & purificación , Humanos , Inmunoprecipitación , Células Jurkat , Espectrometría de Masas , Unión Proteica , Reproducibilidad de los Resultados , Replicación Viral
9.
Nucleic Acids Res ; 42(Database issue): D521-30, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24271399

RESUMEN

The Structure-Function Linkage Database (SFLD, http://sfld.rbvi.ucsf.edu/) is a manually curated classification resource describing structure-function relationships for functionally diverse enzyme superfamilies. Members of such superfamilies are diverse in their overall reactions yet share a common ancestor and some conserved active site features associated with conserved functional attributes such as a partial reaction. Thus, despite their different functions, members of these superfamilies 'look alike', making them easy to misannotate. To address this complexity and enable rational transfer of functional features to unknowns only for those members for which we have sufficient functional information, we subdivide superfamily members into subgroups using sequence information, and lastly into families, sets of enzymes known to catalyze the same reaction using the same mechanistic strategy. Browsing and searching options in the SFLD provide access to all of these levels. The SFLD offers manually curated as well as automatically classified superfamily sets, both accompanied by search and download options for all hierarchical levels. Additional information includes multiple sequence alignments, tab-separated files of functional and other attributes, and sequence similarity networks. The latter provide a new and intuitively powerful way to visualize functional trends mapped to the context of sequence similarity.


Asunto(s)
Bases de Datos de Proteínas , Enzimas/química , Enzimas/clasificación , Enzimas/metabolismo , Internet , Anotación de Secuencia Molecular , Alineación de Secuencia , Relación Estructura-Actividad
10.
Biochemistry ; 54(9): 1807-18, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25654171

RESUMEN

HydE and HydG are radical S-adenosyl-l-methionine enzymes required for the maturation of [FeFe]-hydrogenase (HydA) and produce the nonprotein organic ligands characteristic of its unique catalytic cluster. The catalytic cluster of HydA (the H-cluster) is a typical [4Fe-4S] cubane bridged to a 2Fe-subcluster that contains two carbon monoxides, three cyanides, and a bridging dithiomethylamine as ligands. While recent studies have shed light on the nature of diatomic ligand biosynthesis by HydG, little information exists on the function of HydE. Herein, we present biochemical, spectroscopic, bioinformatic, and molecular modeling data that together map the active site and provide significant insight into the role of HydE in H-cluster biosynthesis. Electron paramagnetic resonance and UV-visible spectroscopic studies demonstrate that reconstituted HydE binds two [4Fe-4S] clusters and copurifies with S-adenosyl-l-methionine. Incorporation of deuterium from D2O into 5'-deoxyadenosine, the cleavage product of S-adenosyl-l-methionine, coupled with molecular docking experiments suggests that the HydE substrate contains a thiol functional group. This information, along with HydE sequence similarity and genome context networks, has allowed us to redefine the presumed mechanism for HydE away from BioB-like sulfur insertion chemistry; these data collectively suggest that the source of the sulfur atoms in the dithiomethylamine bridge of the H-cluster is likely derived from HydE's thiol containing substrate.


Asunto(s)
Clostridium acetobutylicum/enzimología , Dimetilaminas/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Procesamiento Proteico-Postraduccional , Azufre/metabolismo , Catálisis , Dominio Catalítico , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Deuterio/química , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/química , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Simulación del Acoplamiento Molecular , Espectrofotometría Ultravioleta , Azufre/química
11.
PLoS Comput Biol ; 8(1): e1002341, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22253583

RESUMEN

Many protein-protein interactions are mediated by domain-motif interaction, where a domain in one protein binds a short linear motif in its interacting partner. Such interactions are often involved in key cellular processes, necessitating their tight regulation. A common strategy of the cell to control protein function and interaction is by post-translational modifications of specific residues, especially phosphorylation. Indeed, there are motifs, such as SH2-binding motifs, in which motif phosphorylation is required for the domain-motif interaction. On the contrary, there are other examples where motif phosphorylation prevents the domain-motif interaction. Here we present a large-scale integrative analysis of experimental human data of domain-motif interactions and phosphorylation events, demonstrating an intriguing coupling between the two. We report such coupling for SH3, PDZ, SH2 and WW domains, where residue phosphorylation within or next to the motif is implied to be associated with switching on or off domain binding. For domains that require motif phosphorylation for binding, such as SH2 domains, we found coupled phosphorylation events other than the ones required for domain binding. Furthermore, we show that phosphorylation might function as a double switch, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. Evolutionary analysis shows that co-evolution of the motif and the proximal residues capable of phosphorylation predominates over other evolutionary scenarios, in which the motif appeared before the potentially phosphorylated residue, or vice versa. Our findings provide strengthening evidence for coupled interaction-regulation units, defined by a domain-binding motif and a phosphorylated residue.


Asunto(s)
Estructura Terciaria de Proteína , Proteínas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Evolución Molecular , Humanos , Datos de Secuencia Molecular , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Dominios Homologos src
12.
PLoS Comput Biol ; 8(8): e1002639, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927804

RESUMEN

Predicting which mutations proteins tolerate while maintaining their structure and function has important applications for modeling fundamental properties of proteins and their evolution; it also drives progress in protein design. Here we develop a computational model to predict the tolerated sequence space of HIV-1 protease reachable by single mutations. We assess the model by comparison to the observed variability in more than 50,000 HIV-1 protease sequences, one of the most comprehensive datasets on tolerated sequence space. We then extend the model to a second protein, reverse transcriptase. The model integrates multiple structural and functional constraints acting on a protein and uses ensembles of protein conformations. We find the model correctly captures a considerable fraction of protease and reverse-transcriptase mutational tolerance and shows comparable accuracy using either experimentally determined or computationally generated structural ensembles. Predictions of tolerated sequence space afforded by the model provide insights into stability-function tradeoffs in the emergence of resistance mutations and into strengths and limitations of the computational model.


Asunto(s)
Proteasa del VIH/genética , Transcriptasa Inversa del VIH/genética , Mutación , Proteasa del VIH/química , Transcriptasa Inversa del VIH/química , Modelos Moleculares , Conformación Proteica
13.
Bioinformatics ; 26(20): 2564-70, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20802208

RESUMEN

MOTIVATION: Many protein-protein interactions (PPIs) are mediated by protein domains. The structural data of multi-domain PPIs reveal the domain pair (or pairs) that mediate a PPI, and implicitly also the domain pairs that are not involved in the interaction. By analyzing such data, preference relations between domain pairs as interaction mediators may be revealed. RESULTS: Here, we analyze the differential use of domain pairs as mediators of stable interactions based on structurally solved multi-domain protein complexes. Our analysis revealed domain pairs that are preferentially used as interaction mediators and domain pairs that rarely or never mediate interaction, independent of the proteins' context. Between these extremes, there are domain pairs that mediate protein interaction in some protein contexts, while in other contexts different domain pairs predominate over them. By describing the preference relations between domain pairs as a network, we uncovered partial order and transitivity in these relations, which we further exploited for predicting interaction-mediating domains. The preferred domain pairs and the ones over which they predominate differ in several properties, but these differences cannot yet determine explicitly what underlies the differential use of domain pairs as interaction mediators. One property that stood up was the over-abundance of homotypic interactions among the preferred domain pairs, supporting previous suggestions on the advantages in the use of domain self-interaction for mediating protein interactions. Finally, we show a possible association between the preferred domain pairs and the function of the complex where they reside. CONTACT: hanahm@ekmd.huji.ac.il SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Sitios de Unión , Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas/métodos , Estructura Terciaria de Proteína , Proteínas/metabolismo
14.
Proc Natl Acad Sci U S A ; 105(36): 13292-7, 2008 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-18757736

RESUMEN

Compilations of domain-domain interactions based on solved structures suggest there are distinct domain pairs that are used repeatedly in different protein contexts to mediate protein-protein interactions. However, not all protein pairs with the corresponding domains that can potentially mediate interaction do interact, even when they are colocalized and coexpressed. It is conceivable that there are structural and sequence features, below the domain level, that play a role in determining the potential of domains to mediate protein-protein interactions. Here, we discover such features by comparing domains that, on the one hand, mediate homodimerization of proteins and, on the other, occur in different proteins that are documented as monomers. Intriguingly, this comparison uncovered surface loops that can be considered as determinants of the interactions. There are enabling loops, which mediate the domain interactions, and disabling loops that prevent the interactions. The presence of the enabling/disabling loops is consistent with the fulfillment/prevention of the interaction and is highly preserved in evolution. This suggests that, along with the preservation of structural elements that enable interaction, evolution maintains elements intended to prevent unwanted interactions. The enabling and disabling loops discovered in this study have implications in prediction of protein-protein interactions, by pointing to the protein regions that determine the interaction. Our results extend the hierarchy of attributes that collectively establish the modularity of domain-mediated protein-protein interactions.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Biología Computacional , Humanos , Datos de Secuencia Molecular , Unión Proteica
15.
Science ; 371(6533)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674467

RESUMEN

The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with limited, local epistasis, and we establish the underlying physical mechanisms. This residue change occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues associated with organismal growth temperature across 1005 diverse bacterial enzyme families, suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular interactions, and interaction networks that appear to underly temperature adaptation.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/química , Evolución Molecular , Esteroide Isomerasas/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Mutación , Esteroide Isomerasas/genética , Temperatura
16.
Methods Enzymol ; 620: 315-347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31072492

RESUMEN

Integrative computational methods can facilitate the discovery of new protein functions and enzymatic reactions by enabling the observation and investigation of complex sequence-structure-function and evolutionary relationships within protein superfamilies. Here, we highlight the use of sequence similarity networks (SSNs) and phylogenetic reconstructions to map the functional divergence and evolutionary history of protein superfamilies. We exemplify this approach using the nitroreductase (NTR) flavoenzyme superfamily, demonstrating that SSN investigations can provide a rapid and effective means to classify groups of proteins, expose sequence similarity relationships across the global scale of a protein superfamily, and efficiently support detailed phylogenetic analyses. Integration of such approaches with systematic experimental characterization will expand our understanding of the functional diversity of enzymes, their evolution, and their associated physiological roles.


Asunto(s)
Biología Computacional/métodos , Nitrorreductasas/química , Bases de Datos de Proteínas , Evolución Molecular , Modelos Moleculares , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Filogenia , Análisis de Secuencia de Proteína
17.
Methods Enzymol ; 606: 1-71, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097089

RESUMEN

The radical SAM superfamily contains over 100,000 homologous enzymes that catalyze a remarkably broad range of reactions required for life, including metabolism, nucleic acid modification, and biogenesis of cofactors. While the highly conserved SAM-binding motif responsible for formation of the key 5'-deoxyadenosyl radical intermediate is a key structural feature that simplifies identification of superfamily members, our understanding of their structure-function relationships is complicated by the modular nature of their structures, which exhibit varied and complex domain architectures. To gain new insight about these relationships, we classified the entire set of sequences into similarity-based subgroups that could be visualized using sequence similarity networks. This superfamily-wide analysis reveals important features that had not previously been appreciated from studies focused on one or a few members. Functional information mapped to the networks indicates which members have been experimentally or structurally characterized, their known reaction types, and their phylogenetic distribution. Despite the biological importance of radical SAM chemistry, the vast majority of superfamily members have never been experimentally characterized in any way, suggesting that many new reactions remain to be discovered. In addition to 20 subgroups with at least one known function, we identified additional subgroups made up entirely of sequences of unknown function. Importantly, our results indicate that even general reaction types fail to track well with our sequence similarity-based subgroupings, raising major challenges for function prediction for currently identified and new members that continue to be discovered. Interactive similarity networks and other data from this analysis are available from the Structure-Function Linkage Database.


Asunto(s)
Enzimas/clasificación , Radicales Libres/metabolismo , Dominios Proteicos/genética , S-Adenosilmetionina/metabolismo , Secuencia de Aminoácidos/genética , Biología Computacional , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Evolución Molecular , Radicales Libres/química , Filogenia , S-Adenosilmetionina/química , Alineación de Secuencia , Relación Estructura-Actividad
18.
Cancer Lett ; 397: 23-32, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28342985

RESUMEN

Mast cells (MCs) constitute an important part of the tumor microenvironment (TME). However, their underlying mechanisms of activation within the TME remain poorly understood. Here we show that recapitulating cell-to-cell contact interactions by exposing MCs to membranes derived from a number of cancer cell types, results in MC activation, evident by the increased phosphorylation of the ERK1/2 MAP kinases and Akt, in a phosphatidylinositol 3-kinase dependent fashion. Activation is unidirectional since MC derived membranes do not activate cancer cells. Stimulated ERK1/2 phosphorylation is strictly dependent on the ecto enzyme CD73 that mediates autocrine formation of adenosine, and is inhibited by knockdown of the A3 adenosine receptor (A3R) as well as by an A3R antagonist or by agonist-stimulated down-regulation of the A3R. We also show that cancer cell mediated triggering upregulates expression and stimulates secretion of interleukin 8 from the activated MCs. These findings provide evidence for a novel mode of unidirectional crosstalk between MCs and cancer cells implicating direct activation by cancer cells in MC reprogramming into a pro tumorigenic profile.


Asunto(s)
Adenosina/metabolismo , Comunicación Autocrina , Interleucina-8/metabolismo , Neoplasias Pulmonares/metabolismo , Mastocitos/metabolismo , Neoplasias Pancreáticas/metabolismo , Comunicación Paracrina , Receptor de Adenosina A3/metabolismo , Células A549 , Membrana Celular/metabolismo , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mastocitos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Receptor de Adenosina A3/genética , Transducción de Señal , Factores de Tiempo , Transfección , Microambiente Tumoral
19.
Methods Mol Biol ; 1446: 111-132, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27812939

RESUMEN

The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.


Asunto(s)
Enzimas/clasificación , Enzimas/genética , Ontología de Genes , Anotación de Secuencia Molecular/métodos , Animales , Biología Computacional/métodos , Bases de Datos de Proteínas , Enzimas/metabolismo , Humanos
20.
Database (Oxford) ; 2017(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28365730

RESUMEN

With ever-increasing amounts of sequence data available in both the primary literature and sequence repositories, there is a bottleneck in annotating molecular function to a sequence. This article describes the biocuration process and methods used in the structure-function linkage database (SFLD) to help address some of the challenges. We discuss how the hierarchy within the SFLD allows us to infer detailed functional properties for functionally diverse enzyme superfamilies in which all members are homologous, conserve an aspect of their chemical function and have associated conserved structural features that enable the chemistry. Also presented is the Enzyme Structure-Function Ontology (ESFO), which has been designed to capture the relationships between enzyme sequence, structure and function that underlie the SFLD and is used to guide the biocuration processes within the SFLD. Database URL: http://sfld.rbvi.ucsf.edu/.


Asunto(s)
Bases de Datos de Proteínas , Enzimas/química , Enzimas/genética , Ontología de Genes , Anotación de Secuencia Molecular , Homología Estructural de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda