Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Int J Phytoremediation ; 25(12): 1687-1698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36912095

RESUMEN

Mining activities provide a pathway for the entry and accumulation of various heavy metals in soil, which ultimately leads to severe environmental pollution. Utilization of various immobilizing agents could restore such contaminated soils. Therefore, in this study, date palm-derived biochars (BCs: produced at 300 °C, 500 °C and 700 °C) and magnetized biochars (MBCs) were employed to stabilize heavy metals (Cd, Pb, Cu and Zn) in mining polluted soil. Metal polluted soil was amended with BCs and MBCs at w/w ratio of 2% and cultivated with wheat (Triticum aestivum L.) in a greenhouse. After harvesting, dry and fresh biomass of plants were recorded. The soil and plant samples were collected, and the concentrations of heavy metals were measured after extracting with water, DTPA (diethylenetriaminepentaacetic acid), EDTA (ethylenediaminetetraacetic acid), and acetic acid. BCs and MBCs resulted in reduced metal availability and uptake, with higher fresh and dry biomass (>36%). MBCs showed maximum decrease (>70%) in uptake and shoot concentration of metals, as these reductions for Cd and Pb reached below the detection limits. Among all single-step extractions, the DTPA-extractable metals showed a significant positive correlation with shoot concentrations of tested metals. Thus, the synthesized BCs and MBCs could effectively be used for stabilizing heavy metals and improve plant productivity in multi-contaminated soils. However, future studies should focus on long term field trials to restore contaminated mining soils using modified biochars.


This study has demonstrated the performance of magnetized biochars for in-situ stabilization of toxic metals (Cd, Pb, Cu and Zn) in mining polluted soil by single extraction method. All the produced BCs and magnetized BCs showed great potential in immobilizing the metals and reducing their availability in soil, consequently decreasing their shoot concentration and plant uptake. Significant negative correlations were observed between soil pH and metal extraction from applied extraction methods such as water soluble, DTPA, and EDTA extractions. We found DTPA as a suitable extractant for investigating metal uptake in plant in multi-contaminated soils. Treatments with MBCs showed maximum decrease in plant uptake and concentration of studied metals. Thus, application of MBCs could efficiently immobilize soil heavy metals.


Asunto(s)
Metales Pesados , Phoeniceae , Contaminantes del Suelo , Cadmio , Phoeniceae/metabolismo , Plomo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Metales Pesados/análisis , Carbón Orgánico , Suelo , Ácido Pentético
2.
Molecules ; 26(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361826

RESUMEN

Vertical translocation/leaching of sulfamethoxazole (SMZ) through manure-amended sandy loam soil and significance of biochar application on SMZ retention were investigated in this study. Soil was filled in columns and amended with manure spiked with 13.75 mg kg-1 (S1), 27.5 mg kg-1 (S2), and 55 mg kg-1 (S3) of SMZ. Jujube (Ziziphus jujube L.) wood waste was transformed into biochar and mixed with S3 at 0.5% (S3-B1), 1.0% (S3-B2), and 2.0% (S3-B3) ratio. Cumulative SMZ leaching was lowest at pH 3.0, which increased by 16% and 34% at pH 5.0 and 7.0, respectively. A quicker release and translocation of SMZ from manure occurred during the initial 40 h, which gradually reduced over time. Intraparticle diffusion and Elovich kinetic models were the best fitted to leaching data. S3 exhibited the highest release and vertical translocation of SMZ, followed by S2, and S1; however, SMZ leaching was reduced by more than twofold in S3-B3. At pH 3.0, 2.0% biochar resulted in 99% reduction in SMZ leaching within 72 h, while 1.0% and 0.5% biochar applications reduced SMZ leaching to 99% within 120 and 144 h, respectively, in S3. The higher SMZ retention onto biochar could be due to electrostatic interactions, H-bonding, and π-π electron donor acceptor interactions.


Asunto(s)
Carbón Orgánico/química , Estiércol/análisis , Arena/química , Contaminantes del Suelo/metabolismo , Sulfametoxazol/metabolismo , Madera/química , Riego Agrícola , Contaminantes del Suelo/análisis , Sulfametoxazol/análisis
3.
Sci Rep ; 14(1): 18634, 2024 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128922

RESUMEN

Water scarcity and droughts are among the most challenging issues worldwide, particularly in arid and semi-arid regions like Saudi Arabia. Date palm (Phoenix dactylifera L.), a major crop in Saudi Arabia, is being significantly affected by water scarcity, soil salinity, and desertification. Alternative water sources are needed to conserve freshwater resources and increase date palm production in Saudi Arabia. On the other hand, Saudi Arabia has a significant number of aquaculture farms that generate substantial amounts of wastewater, which can be utilized as an alternative source of irrigation. Therefore, this study aimed to assess the potential of aquaculture wastewater as an alternative irrigation source for date palm orchards. Aquaculture wastewater was collected from 12 different farms (Al-Kharj, Al-Muzahmiya, and Al-Qassim regions, Saudi Arabia) and its quality was analyzed. The impacts of aquaculture wastewater irrigation on soil quality, nutrient availability, nutrient status of date palm trees, and dates fruit quality were assessed in comparison to source water (freshwater) irrigation at Al-Kharj, Al-Muzahmiya, and Al-Qassim regions. The water quality analyses showed higher salinity (EC = 3.31 dSm-1) in farm Q3, while all other farms demonstrated no salinity, sodicity, or alkalinity hazards. Moreover, the aquaculture wastewater irrigation increased soil available P, K, NO3--N, and NH4+-N by 49.31%, 21.11%, 33.62%, and 52.31%, respectively, compared to source water irrigation. On average, date palm fruit weight, length, and moisture contents increased by 26%, 23%, and 43% under aquaculture wastewater irrigation compared to source water irrigation. Further, P, K, Fe, Cu, and Zn contents in date palm leaf were increased by 19.35%, 34.17%, 37.36%, 38.24%, and 45.29%, respectively, under aquaculture wastewater irrigation compared to source water irrigation. Overall, aquaculture wastewater irrigation significantly enhanced date palm plant growth, date palm fruit quality, and soil available nutrients compared to freshwater irrigation. It was concluded that aquaculture wastewater can be used as an effective irrigation source for date palm farms as it enhances soil nutrient availability, date palm growth, and date fruit yield and quality. The findings of this study suggest that aquaculture wastewater could be a viable alternative for conserving freshwater resources and increase date palm production in Saudi Arabia.


Asunto(s)
Riego Agrícola , Acuicultura , Frutas , Phoeniceae , Suelo , Aguas Residuales , Riego Agrícola/métodos , Acuicultura/métodos , Suelo/química , Frutas/crecimiento & desarrollo , Arabia Saudita , Nutrientes/análisis , Salinidad
4.
Environ Pollut ; 335: 122319, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544401

RESUMEN

Extensive production and utilization of plastic products have resulted in the generation of microplastics (MPs), subsequently polluting the environment. The efficiency of biochars (BCs) derived from jujube (Ziziphus jujube L.) biomass (300 °C and 700 °C) for nylon (NYL) and polyethylene (PE) removal from contaminated water was explored in fixed-bed column trials. The optimum pH for the removal of both MPs was found 7. Both of the produced biochars demonstrated >99% removal of the MPs, while the sand filter exhibited a maximum of 78% removal of MPs. BC produced at 700 °C (BC700) showed 33-fold higher MPs retention, while BC produced at 300 °C (BC300) exhibited 20-fold higher retention, as compared to sand filters, indicating the higher efficiency of BC produced at higher pyrolysis temperature. Entrapment into the pores, entanglement with flaky structures of the BCs, and electrostatics interactions were the major mechanism for MPs retention in BCs. The efficiency of MPs-amended BCs was further explored for the removal of Pb(II) and Cd(II) in fixed-bed column trials. BC700 amended with PE and NYL exhibited the highest 50% breakthrough time (2114.23 and 2024.61 min, respectively, for Pb(II) removal and 2107.92 and 1965.19 min, respectively, for Cd(II) removal), as compared to sand filters (38.07 and 60.49 min for Pb(II) and Cd(II) removal, respectively). Thomas model predicted highest adsorption capacity was exhibited by BC700 amended with PE (584.34 and 552.80 mg g-1, for Pb(II) and Cd(II) removal, respectively), followed by BC700 amended with NYL (557.65 and 210.59 mg g-1 for Pb(II) and Cd(II) removal, respectively). Therefore, jujube waste-derived BCs could be used as efficient adsorbents to remove PE and NYL from contaminated water, while MPs-loaded BCs can further be utilized for higher adsorption of Pb(II) and Cd(II) from contaminated aqueous media. These findings suggest that BC could be used as an efficient adsorbent to remove the co-existing MPs-metals ions from the environment on a sustainable basis.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Ziziphus , Microplásticos , Plásticos , Cadmio , Agua , Plomo , Carbón Orgánico/química , Nylons , Adsorción , Polietilenos , Contaminantes Químicos del Agua/química
5.
Toxics ; 11(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999533

RESUMEN

Microplastics (MPs) are emerging environmental pollutants worldwide, posing potential health risks. Moreover, MPs may act as vectors for other contaminants and affect their fate, transport, and deposition in the environment. Therefore, efficient and economical techniques are needed for the removal of contemporary MPs and contaminants from the environment. The present research study investigated the sorption of phosphorus (P) and ammonium (NH4+) onto date palm waste-derived biochar (BC) from an aqueous solution in the presence of polyamide (PA) and polyethylene (PE) MPs. The BC was prepared at 600 °C, characterized for physio-chemical properties, and applied for P and NH4+ removal via isotherm and kinetic sorption trials. The results of the sorption trials demonstrated the highest removal of NH4+ and P was obtained at neutral pH 7. The highest P sorption (93.23 mg g-1) by BC was recorded in the presence of PA, while the highest NH4+ sorption (103.76 mg g-1) was found with co-occurring PE in an aqueous solution. Sorption isotherm and kinetics models revealed that P and NH4+ removal by MP-amended BC followed chemisorption, electrostatic interaction, precipitation, diffusion, and ion exchange mechanisms. Overall, co-existing PA enhanced the removal of P and NH4+ by 66% and 7.7%, respectively, while co-existing PE increased the removal of P and NH4+ by 55% and 30%, respectively, through the tested BC. Our findings suggested that converting date palm waste into BC could be used as a competent and economical approach to removing P and NH4+ from contaminated water. Furthermore, microplastics such as PE and PA could assist in the removal of P and NH4+ from contaminated water using BC.

6.
Saudi J Biol Sci ; 28(11): 6218-6229, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34764750

RESUMEN

The development of a simple method to synthesize highly efficient and stable magnetic microsphere beads for sulfathiazole (STZ) removal from contaminated aqueous media was demonstrated in this study. Conocarpus (Conocarpus erectus L.) tree waste (CW) derived biochar (BC) was modified to fabricate chitosan-BC (CBC) and magnetic CBC (CBC-Fe) microsphere beads. Proximate, chemical, and structural properties of the produced adsorbents were investigated. Kinetics, equilibrium, and pH adsorption batch trials were conducted to evaluate the effectiveness of the synthesized adsorbents for STZ removal. All adsorbents exhibited the highest STZ adsorption at pH 5.0. STZ adsorption kinetics data was best emulated using pseudo-second order and Elovich models. The equilibrium adsorption data was best emulated using Langmuir, Freundlich, Redlich-Peterson, and Temkin models. CBC-Fe demonstrated the highest Elovich, pseudo-second order, and power function rate constants, as well as the highest apparent diffusion rate constant. Additionally, Langmuir isotherm predicted maximum adsorption capacity was the highest for CBC-Fe (98.67 mg g-1), followed by CBC (56.54 mg g-1) and BC (48.63 mg g-1). CBC-Fe and CBC removed 74.5%-108.8% and 16.2%-25.6% more STZ, respectively, than that of pristine BC. π-π electron-donor-acceptor interactions and Lewis acid-base reactions were the main mechanisms for STZ removal; however, intraparticle diffusion and H-bonding further contributed in the adsorption process. The higher efficiency of CBC-Fe for STZ adsorption could be due to its magnetic properties as well as stronger and conducting microsphere beads, which degraded the STZ molecules through generation of HO• radicals.

7.
Plants (Basel) ; 10(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34961036

RESUMEN

Elevated levels of doxycycline (DC) have been detected in the environment due to its extensive utilization as a veterinary antibiotic. Sorption-desorption behavior of DC in soil affects its transport, transformation, and availability in the environment. Thus, sorption-desorption behavior of DC was explored in three soils (S1, S2, and S3) after manure application with and without mesquite wood-waste-derived biochar (BC) pyrolyzed at 600 °C. Sorption batch trials demonstrated the highest DC sorption in soil S1 as compared to S2 and S3, either alone or in combination with manure or manure + BC. Chemical sorption and pore diffusion were involved in DC sorption, as indicated by the kinetic models. Soil S1 with manure + BC exhibited the highest Langmuir model predicted sorption capacity (18.930 mg g-1) compared with the other two soils. DC sorption capacity of soils was increased by 5.0-6.5-fold with the addition of manure, and 10-13-fold with BC application in a soil-manure system. In desorption trials, manure application resulted in 67%, 40%, and 41% increment in DC desorption in soil S1, S2, and S3, respectively, compared to the respective soils without manure application. In contrast, BC application reduced DC desorption by 73%, 66%, and 65%, in S1, S2, and S3, respectively, compared to the soils without any amendment. The highest DC sorption after BC application could be due to H bonding, π-π EDA interactions, and diffusion into the pores of BC. Hence, mesquite wood-waste-derived BC can effectively be used to enhance DC retention in contaminated soil to ensure a sustainable ecosystem.

8.
Sci Rep ; 10(1): 16125, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999378

RESUMEN

Novel carbon nanodots (nCD-DBC) and nano zero-valent iron composites (nZVI-DBC) were synthesized using date palm waste-derived biochar (DBC). The synthesized materials were analyzed for chemical and structural composition by using FTIR, SEM, XRD, and TGA, and evaluated for their methylthioninium chloride dye (MB) removal efficiency from contaminated aqueous solutions. pH 7.0 was found optimum for the highest MB removal in sorption batch studies. Kinetics sorption of MB onto the sorbents was best described by pseudo-second-order (R2 = 0.93-0.99) and Elovich models (R2 = 0.86-0.97) implying that sorption was being controlled by chemisorption. Langmuir model predicted maximum sorption capacities for nCD-DBC, nZVI-DBC, and DBC were 1558.66, 1182.90, and 851.67 mg g-1, respectively, which correlated with the results of kinetics sorption. Likewise, nCD-DBC yielded the highest partition coefficient (7067 mL g-1), followed by nZVI-DBC (1460 mL g-1), and DBC (930 mL g-1). Post-sorption XRD, FTIR, and SEM analyses depicted the binding of MB onto the sorbents. It was suggested that electrostatic interactions, π-π electron donor-accepter interactions, degradation, and diffusion were responsible for MB removal by the synthesized materials. Therefore, the nCD-DBC, nZVI-DBC, and DBC can potentially be used for scavenging MB dye from contaminated aqueous solutions.

9.
Environ Pollut ; 266(Pt 1): 115256, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32712479

RESUMEN

Waste date palm-derived biochar (DPBC) was modified with nano-zerovalent iron (BC-ZVI) and silica (BC-SiO2) through mechanochemical treatments and evaluated for arsenate (As(V)) removal from water. The feedstock and synthesized adsorbents were characterized through proximate, ultimate, and chemical analyses for structural, surface, and mineralogical compositions. BC-ZVI demonstrated the highest surface area and contents of C, N, and H. A pH range of 2-6 was optimum for BC-ZVI (100% removal), 3-6 for DPBC (89% removal), and 4-6 for BC-SiO2 (18% removal). Co-occurring PO43- and SO42- ions showed up to 100% reduction, while NO3- and Cl- ions resulted in up to 26% reduction in As(V) removal. Fitness of the Langmuir, Freundlich and Redlich-Peterson isotherms to As(V) adsorption data suggested that both mono- and multi-layer adsorption processes occurred. BC-ZVI showed superior performance by demonstrating the highest Langmuir maximum adsorption capacity (26.52 mg g-1), followed by DPBC, BC-SiO2, and commercial activated carbon (AC) (7.33, 5.22, and 3.28 mg g-1, respectively). Blockage of pores with silica particles in BC-SiO2 resulted in lower As(V) removal than that of DPBC. Pseudo-second-order kinetic model fitted well with the As(V) adsorption data (R2 = 0.99), while the Elovich, intraparticle diffusion, and power function models showed a moderate fitness (R2 = 0.53-0.93). The dynamics of As(V) adsorption onto the tested adsorbents exhibited the highest adsorption rates for BC-ZVI. As(V) adsorption onto the tested adsorbents was confirmed through post-adsorption FTIR, SEM-EDS, and XRD analyses. Adsorption of As(V) onto DPBC, BC-SiO2, and AC followed electrostatic interactions, surface complexation, and intraparticle diffusion, whereas, these mechanisms were further abetted by the higher surface area, nano-sized structure, and redox reactions of BC-ZVI.


Asunto(s)
Hierro , Contaminantes Químicos del Agua/análisis , Adsorción , Arseniatos , Carbón Orgánico , Cinética , Dióxido de Silicio , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda