Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Clin Exp Immunol ; 191(3): 279-287, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29277898

RESUMEN

Acute lung injury (ALI) is a heterogeneous disease with the hallmarks of alveolar capillary membrane injury, increased pulmonary oedema and pulmonary inflammation. The most common direct aetiological factor for ALI is usually parenchymal lung infection or haemorrhage. Reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) are thought to play an important role in the pathophysiology of ALI. Glucose-6-phosphate dehydrogenase (G6PD) plays an important role both in production of ROS as well as their removal through the supply of NADPH. However, how G6PD modulation affects NOX2-mediated ROS in the airway epithelial cells (AECs) during acute lung injury has not been explored previously. Therefore, we investigated the effect of G6PD inhibitor, 6-aminonicotinamide on G6PD activity, NOX2 expression, ROS production and enzymatic anti-oxidants in AECs in a mouse model of ALI induced by lipopolysaccharide (LPS). ALI led to increased G6PD activity in the AECs with concomitant elevation of NOX2, ROS, SOD1 and nitrotyrosine. G6PD inhibitor led to reduction of LPS-induced airway inflammation, bronchoalveolar lavage fluid protein concentration as well as NOX2-derived ROS and subsequent oxidative stress. Conversely, ALI led to decreased glutathione reductase activity in AECs, which was normalized by G6PD inhibitor. These data show that activation of G6PD is associated with enhancement of oxidative inflammation in during ALI. Therefore, inhibition of G6PD might be a beneficial strategy during ALI to limit oxidative damage and ameliorate airway inflammation.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Citometría de Flujo , Regulación de la Expresión Génica , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Humanos , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , NADPH Oxidasas/genética , Niacinamida/administración & dosificación , Niacinamida/análogos & derivados , Niacinamida/farmacología , Estrés Oxidativo , Mucosa Respiratoria/patología
2.
Mutagenesis ; 29(1): 55-62, 2014 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-24342934

RESUMEN

Although chloroacetonitrile (CAN), a disinfection by-product of chlorination of drinking water, is considered a rodent carcinogen that induces lung adenomas in mice, previous studies on its genotoxicity have yielded inconclusive results. Thus, its cancer mode of action has not been clearly defined. We evaluated CAN-induced genotoxicity in mice using mouse bone marrow micronucleus test, comet assays and expression of genes associated with DNA damage repair. Mice exposed to CAN at 8.75, 17.5, 35 and 52.5mg/kg for 7 days did not exhibit any significant increases in the incidence of micronuclei formation at 24 and 48h after last exposure. However, CAN caused significant suppressions of erythroblast proliferation at the highest dose. In the alkaline comet assay, there was a significant increase in the incidence of DNA strand breaks in mice killed after 3h of last treatment with 35 and 52.5mg/kg/day CAN, while no significant difference in the DNA strand breaks was found in mice killed after 24h of the last treatment. However, slight (but significant) CAN-induced oxidative DNA damage was detected following Fpg digestion at 3-h sampling time, digestion with EndoIII resulted in considerable increases in oxidative DNA damage at 3 and 24h after the last exposure to 35 and 52.5mg/kg/day CAN as detected by oxidative comet assays. The expression of DNA repair genes OGG1 , Apex1, PARP1 and p53 were up-regulated in mice given 35mg/kg/day CAN at 3h but not in 24h after the last treatment except OGG1 . However, the significant up-regulation of OGG1 at 24h after the last treatment further indicates the occurrence of oxidative DNA damage. Overall, CAN exposure is associated with up-regulation of DNA repair gene expression and the induction of oxidative DNA damage, which may be at least partially responsible for CAN-induced genotoxicity and eventually cause carcinogenicity.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda