Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Learn Mem ; 18(6): 375-83, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21597043

RESUMEN

Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre-deleter mouse lines, respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/metabolismo , Memoria/fisiología , Análisis de Varianza , Animales , Condicionamiento Psicológico/fisiología , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large , Conducta Exploratoria/fisiología , Miedo , Guanilato-Quinasas/metabolismo , Hipocampo/citología , Proteínas Sustrato del Receptor de Insulina/deficiencia , Aprendizaje por Laberinto/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Neuronas/metabolismo , Neuronas/ultraestructura , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Eliminación de Secuencia/genética
2.
Biochem J ; 429(2): 323-33, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20465544

RESUMEN

AMPK (AMP-activated protein kinase) signalling plays a key role in whole-body energy homoeostasis, although its precise role in pancreatic beta-cell function remains unclear. In the present study, we therefore investigated whether AMPK plays a critical function in beta-cell glucose sensing and is required for the maintenance of normal glucose homoeostasis. Mice lacking AMPK alpha2 in beta-cells and a population of hypothalamic neurons (RIPCre alpha2KO mice) and RIPCre alpha2KO mice lacking AMPK alpha1 (alpha1KORIPCre alpha2KO) globally were assessed for whole-body glucose homoeostasis and insulin secretion. Isolated pancreatic islets from these mice were assessed for glucose-stimulated insulin secretion and gene expression changes. Cultured beta-cells were examined electrophysiologically for their electrical responsiveness to hypoglycaemia. RIPCre alpha2KO mice exhibited glucose intolerance and impaired GSIS (glucose-stimulated insulin secretion) and this was exacerbated in alpha1KORIPCre alpha2KO mice. Reduced glucose concentrations failed to completely suppress insulin secretion in islets from RIPCre alpha2KO and alpha1KORIPCre alpha2KO mice, and conversely GSIS was impaired. Beta-cells lacking AMPK alpha2 or expressing a kinase-dead AMPK alpha2 failed to hyperpolarize in response to low glucose, although KATP (ATP-sensitive potassium) channel function was intact. We could detect no alteration of GLUT2 (glucose transporter 2), glucose uptake or glucokinase that could explain this glucose insensitivity. UCP2 (uncoupling protein 2) expression was reduced in RIPCre alpha2KO islets and the UCP2 inhibitor genipin suppressed low-glucose-mediated wild-type mouse beta-cell hyperpolarization, mimicking the effect of AMPK alpha2 loss. These results show that AMPK alpha2 activity is necessary to maintain normal pancreatic beta-cell glucose sensing, possibly by maintaining high beta-cell levels of UCP2.


Asunto(s)
Proteínas Quinasas Activadas por AMP/deficiencia , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Glucoquinasa/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Transportador de Glucosa de Tipo 2/metabolismo , Homeostasis , Hipoglucemia/fisiopatología , Hipotálamo/fisiología , Técnicas In Vitro , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Potenciales de la Membrana , Ratones , Ratones Noqueados , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Ratas , Transducción de Señal , Proteína Desacopladora 2
3.
J Clin Invest ; 117(8): 2325-36, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17671657

RESUMEN

Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. In contrast, AgRP alpha 2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.


Asunto(s)
Metabolismo Energético/fisiología , Homeostasis/fisiología , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Complejos Multienzimáticos/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Proteína Relacionada con Agouti , Animales , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Leptina/metabolismo , Ratones , Ratones Noqueados , Complejos Multienzimáticos/deficiencia , Proopiomelanocortina/deficiencia , Proteínas Serina-Treonina Quinasas/deficiencia , Transducción de Señal/fisiología
4.
Biochem Biophys Res Commun ; 386(1): 257-62, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19523444

RESUMEN

As impaired insulin signalling (IIS) is a risk factor for Alzheimer's disease we crossed mice (Tg2576) over-expressing human amyloid precursor protein (APP), with insulin receptor substrate 2 null (Irs2(-/-)) mice which develop insulin resistance. The resulting Tg2576/Irs2(-/-) animals had increased tau phosphorylation but a paradoxical amelioration of Abeta pathology. An increase of the Abeta binding protein transthyretin suggests that increased clearance of Abeta underlies the reduction in plaques. Increased tau phosphorylation correlated with reduced tau-phosphatase PP2A, despite an inhibition of the tau-kinase glycogen synthase kinase-3. Our findings demonstrate that disruption of IIS in Tg2576 mice has divergent effects on pathological processes-a reduction in aggregated Abeta but an increase in tau phosphorylation. However, as these effects are accompanied by improvement in behavioural deficits, our findings suggest a novel protective effect of disrupting IRS2 signalling in AD which may be a useful therapeutic strategy for this condition.


Asunto(s)
Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Hipocampo/fisiopatología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Memoria , Enfermedad de Alzheimer/metabolismo , Animales , Eliminación de Gen , Hipocampo/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Ratones , Ratones Transgénicos , Fosforilación , Proteínas tau/metabolismo
5.
FASEB J ; 22(3): 807-18, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17928362

RESUMEN

Recent evidence suggests that alterations in insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) can increase mammalian life span. For example, in several mouse mutants, impairment of the growth hormone (GH)/IGF1 axis increases life span and also insulin sensitivity. However, the intracellular signaling route to altered mammalian aging remains unclear. We therefore measured the life span of mice lacking either insulin receptor substrate (IRS) 1 or 2, the major intracellular effectors of the IIS receptors. Our provisional results indicate that female Irs1-/- mice are long-lived. Furthermore, they displayed resistance to a range of age-sensitive markers of aging including skin, bone, immune, and motor dysfunction. These improvements in health were seen despite mild, lifelong insulin resistance. Thus, enhanced insulin sensitivity is not a prerequisite for IIS mutant longevity. Irs1-/- female mice also displayed normal anterior pituitary function, distinguishing them from long-lived somatotrophic axis mutants. In contrast, Irs2-/- mice were short-lived, whereas Irs1+/- and Irs2+/- mice of both sexes showed normal life spans. Our results therefore suggest that IRS1 signaling is an evolutionarily conserved pathway regulating mammalian life span and may be a point of intervention for therapies with the potential to delay age-related processes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Longevidad/genética , Animales , Biomarcadores/análisis , Femenino , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Transducción de Señal/genética
6.
Sci Rep ; 9(1): 16133, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695068

RESUMEN

Huntington's disease (HD) is a fatal inherited autosomal dominant neurodegenerative disorder caused by an expansion in the number of CAG trinucleotide repeats in the huntingtin gene. The disease is characterized by motor, behavioural and cognitive symptoms for which at present there are no disease altering treatments. It has been shown that manipulating the mTOR (mammalian target of rapamycin) pathway using rapamycin or its analogue CCI-779 can improve the cellular and behavioural phenotypes of HD models. Ribosomal protein S6 kinase 1 (S6K1) is a major downstream signalling molecule of mTOR, and its activity is reduced by rapamycin suggesting that deregulation of S6K1 activity may be beneficial in HD. Furthermore, S6k1 knockout mice have increased lifespan and improvement in age-related phenotypes. To evalute the potential benefit of S6k1 loss on HD-related phenotypes, we crossed the R6/2 HD model with the long-lived S6k1 knockout mouse line. We found that S6k1 knockout does not ameliorate behavioural or physiological phenotypes in the R6/2 mouse model. Additionally, no improvements were seen in brain mass reduction or mutant huntingtin protein aggregate levels. Therefore, these results suggest that while a reduction in S6K1 signalling has beneficial effects on ageing it is unlikely to be a therapeutic strategy for HD patients.


Asunto(s)
Eliminación de Gen , Enfermedad de Huntington/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
7.
J Clin Invest ; 115(4): 940-50, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15841180

RESUMEN

Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in beta cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and beta cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced beta cell mass. Overt diabetes did not ensue, because beta cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced beta cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in beta cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis.


Asunto(s)
Metabolismo Energético , Homeostasis , Hipotálamo/metabolismo , Islotes Pancreáticos/metabolismo , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Animales , Peso Corporal , Electrofisiología , Genotipo , Glucosa/metabolismo , Hipotálamo/citología , Insulina/administración & dosificación , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Islotes Pancreáticos/citología , Leptina/administración & dosificación , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Fosfoproteínas/genética , Proopiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
8.
PLoS One ; 7(2): e31124, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22383997

RESUMEN

OBJECTIVE: Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2). RESEARCH DESIGN AND METHODS: To study neuronal function and synaptic plasticity in the absence of confounding factors such as hyperglycaemia, we used a mouse model with a central nervous system- (CNS)-restricted deletion of IRS-2 (NesCreIrs2KO). RESULTS: We report a deficit in NMDA receptor-dependent synaptic plasticity in the hippocampus of NesCreIrs2KO mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by the previous activity of a synapse. These plasticity changes are associated with reduced basal phosphorylation of the NMDA receptor subunit NR1 and of downstream targets of the PI3K pathway, the protein kinases Akt and GSK-3ß. CONCLUSIONS: These findings reveal molecular and cellular mechanisms that might underlie cognitive deficits linked to specific defects of neuronal insulin signalling.


Asunto(s)
Encéfalo/metabolismo , Proteínas Sustrato del Receptor de Insulina/biosíntesis , Proteínas Sustrato del Receptor de Insulina/genética , Plasticidad Neuronal , Animales , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Electrofisiología/métodos , Femenino , Heterocigoto , Hipocampo/metabolismo , Hiperglucemia/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , Receptores de N-Metil-D-Aspartato/metabolismo , Proyectos de Investigación , Sinapsis/metabolismo
9.
Diabetes ; 60(3): 735-45, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21266325

RESUMEN

OBJECTIVE: AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase ß (CaMKKß) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS: Mice lacking either Camkkß or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS: Deletion of Camkkß in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS: Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.


Asunto(s)
Glucosa/metabolismo , Homeostasis/genética , Hipotálamo/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Análisis de Varianza , Animales , Área Bajo la Curva , Peso Corporal/genética , Recuento de Células , Ingestión de Alimentos/genética , Electrofisiología , Metabolismo Energético/genética , Femenino , Glucosa/genética , Técnica de Clampeo de la Glucosa , Inmunohistoquímica , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Transgénicos , Proopiomelanocortina/genética , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Estadísticas no Paramétricas
10.
Cell Metab ; 10(5): 343-54, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19883613

RESUMEN

PI3K signaling is thought to mediate leptin and insulin action in hypothalamic pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, through largely unknown mechanisms. We inactivated either p110alpha or p110beta PI3K catalytic subunits in these neurons and demonstrate a dominant role for the latter in energy homeostasis regulation. In POMC neurons, p110beta inactivation prevented insulin- and leptin-stimulated electrophysiological responses. POMCp110beta null mice exhibited central leptin resistance, increased adiposity, and diet-induced obesity. In contrast, the response to leptin was not blocked in p110alpha-deficient POMC neurons. Accordingly, POMCp110alpha null mice displayed minimal energy homeostasis abnormalities. Similarly, in AgRP neurons, p110beta had a more important role than p110alpha. AgRPp110alpha null mice displayed normal energy homeostasis regulation, whereas AgRPp110beta null mice were lean, with increased leptin sensitivity and resistance to diet-induced obesity. These results demonstrate distinct metabolic roles for the p110alpha and p110beta isoforms of PI3K in hypothalamic energy regulation.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Metabolismo Energético/fisiología , Isoenzimas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proopiomelanocortina/metabolismo , Adiposidad/genética , Animales , Fosfatidilinositol 3-Quinasa Clase I , Dieta , Fenómenos Electrofisiológicos , Hipotálamo/metabolismo , Insulina/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Leptina/metabolismo , Ratones , Ratones Noqueados , Células Neuroendocrinas/enzimología , Obesidad/genética , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal
11.
Science ; 326(5949): 140-4, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19797661

RESUMEN

Caloric restriction (CR) protects against aging and disease, but the mechanisms by which this affects mammalian life span are unclear. We show in mice that deletion of ribosomal S6 protein kinase 1 (S6K1), a component of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway, led to increased life span and resistance to age-related pathologies, such as bone, immune, and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian life-span and suggest that therapeutic manipulation of S6K1 and AMPK might mimic CR and could provide broad protection against diseases of aging.


Asunto(s)
Envejecimiento/fisiología , Longevidad/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Densidad Ósea , Restricción Calórica , Femenino , Eliminación de Gen , Expresión Génica , Regulación de la Expresión Génica , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Músculo Esquelético/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Subgrupos de Linfocitos T/inmunología , Serina-Treonina Quinasas TOR , Transcripción Genética
12.
J Physiol ; 578(Pt 2): 425-38, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17068101

RESUMEN

The hypothalamic melanocortin system is crucial for the control of appetite and body weight. Two of the five melanocortin receptors, MC3R and MC4R are involved in hypothalamic control of energy homeostasis, with the MC4R having the major influence. It is generally thought that the main impact of the melanocortin system on hypothalamic circuits is external to the arcuate nucleus, and that any effect locally in the arcuate nucleus is inhibitory on proopiomelanocortin-expressing (POMC) neurons. In contrast, using current- and voltage-clamp recordings from identified neurons, we demonstrate that MC3R and MC4R agonists depolarize arcuate POMC neurons and a separate arcuate neuronal population identified by the rat insulin 2 promoter (RIPCre) transgene expression. Furthermore, the endogenous MC3R and MC4R antagonist, agouti-related protein (AgRP), hyperpolarizes POMC and RIPCre neurons in the absence of melanocortin agonist, consistent with inverse agonism at the MC4R. A decreased transient outward (I(A)) potassium conductance, and to a lesser extent the inward rectifier (K(IR)) conductance, underlies neuronal depolarization, whereas an increase in I(A) mediates AgRP-induced hyperpolarization. Accordingly, POMC and RIPCre neurons may be targets for peptide transmitters that are possibly released locally from AgRP-expressing and POMC neurons in the arcuate nucleus, adding further previously unappreciated complexity to the arcuate system.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Melanocortinas/farmacología , Canales de Potasio/fisiología , Transmisión Sináptica/efectos de los fármacos , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Inhibidores de Adenilato Ciclasa , Proteína Relacionada con Agouti , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/fisiología , Bario/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/genética , Integrasas/metabolismo , Hormonas Estimuladoras de los Melanocitos/farmacología , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Péptidos Cíclicos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Receptor de Melanocortina Tipo 3/agonistas , Receptor de Melanocortina Tipo 3/antagonistas & inhibidores , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/antagonistas & inhibidores , Transmisión Sináptica/fisiología , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
13.
Biol Reprod ; 76(6): 1045-53, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17329594

RESUMEN

Insulin receptor signaling regulates female reproductive function acting in the central nervous system and ovary. Female mice that globally lack insulin receptor substrate (IRS) 2, which is a key mediator of insulin receptor action, are infertile with defects in hypothalamic and ovarian functions. To unravel the tissue-specific roles of IRS2, we examined reproductive function in female mice that lack Irs2 only in the neurons. Surprisingly, these animals had minimal defects in pituitary and ovarian hormone levels, ovarian anatomy and function, and breeding performance, which indicates that the central nervous system IRS2 is not an obligatory signaling component for the regulation of reproductive function. Therefore, we undertook a detailed analysis of ovarian function in a novel Irs2 global null mouse line. Comparative morphometric analysis showed reduced follicle size, increased numbers of atretic follicles, as well as impaired oocyte growth and antral cavity development in Irs2 null ovaries. Granulosa cell proliferation was also defective in the Irs2 null ovaries. Furthermore, the insulin- and eCG-stimulated phosphoinositide-3-OH kinase signaling events, which included phosphorylation of Akt/protein kinase B and glycogen synthase kinase 3-beta, were impaired, whereas mitogen-activated protein kinase signaling was preserved in Irs2 null ovaries. These abnormalities were associated with reduced expression of cyclin D2 and increased CDKN1B levels, which indicates dysregulation of key components of the cell cycle apparatus implicated in ovarian function. Our data suggest that ovarian rather than central nervous system IRS2 signaling is important in the regulation of female reproductive function.


Asunto(s)
Sistema Nervioso Central/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Ovario/metabolismo , Fosfoproteínas/fisiología , Reproducción/fisiología , Animales , Proliferación Celular , Ciclina D2 , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células de la Granulosa/citología , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Ovario/embriología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda