Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Pak J Pharm Sci ; 37(5): 939-948, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39369443

RESUMEN

Glioblastoma multiforme is the most aggressive and invasive primary brain tumor in adults and its prognosis and survival rate remain poor. Despite substantial improvements in therapy, the 5-year survival rate of glioblastoma patients remains low. Sesquiterpenes have previously been found to be effective in inhibiting the proliferation and growth of breast, gastric and lung cancer cells. Owing to their efficacy, sesquiterpenes have been used in various clinical trials. In the present study, we investigated the anticancer efficacy of a well-known sesquiterpene, Zingiberene, isolated from Zingiber officinale in C6 glioblastoma cells. Zingiberene suppresses the growth and proliferation of C6 cells. Upon treatment of C6 cells with zingiberene, nuclear fragmentation and ROS were qualitatively enhanced compared to untreated control cells. The levels of caspase-3 were also significantly reduced (p<0.01), with a concomitant decline in the mRNA expression of Bax and Bcl-2. On the basis of molecular docking studies, Zingiberene demonstrated good binding energy score of -6.8 and -5.5 Kcal/mol towards Bax and Bcl-2 proteins, respectively. Based on these observations, it was inferred that zingiberene has potential as a plausible therapeutic agent against glioblastoma cells. Detailed mechanistic studies are needed to substantiate and establish the anticancer effects of zingiberene against glioblastoma cells.


Asunto(s)
Apoptosis , Proliferación Celular , Glioblastoma , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-bcl-2 , Especies Reactivas de Oxígeno , Sesquiterpenos , Proteína X Asociada a bcl-2 , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Caspasa 3/metabolismo , Caspasa 3/genética , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Animales , Ratas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Zingiber officinale/química , Humanos
2.
Semin Cancer Biol ; 86(Pt 2): 645-663, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35405339

RESUMEN

Evident role of inflammation in cancer development and progression prompted the application of anti-inflammatory medications as a therapeutic strategy. The major bottleneck for the anti-inflammatory drugs is targeted delivery to the cancerous cell. Nanotechnology has provided safe and effective way for targeted cancer therapy. However, the complex and heterogeneous traits of cancer, incomplete information on fate and behavior of nanomedicines in human body, and lack of large-scale commercial production have slowed down the pace of nanomedicines development. To shift the paradigm from conventional cancer therapeutics to anti-inflammatory nano-therapeutics, thorough understanding of the strategies, progress, success, challenges and future perspectives are needed. The present review highlights all these aspects in addition to innovations patented on them. In fact, patent plays a vital role in protection of innovations, and further translation of lab-scale outcomes into bedside medications. Thus, the review introspects and recognizes the glitches in successful clinical translation of anti-inflammatory nanomedicines.


Asunto(s)
Nanomedicina , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Nanotecnología , Neoplasias/tratamiento farmacológico , Inflamación/tratamiento farmacológico
3.
Medicina (Kaunas) ; 59(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36984547

RESUMEN

Background and Objectives: Ochradenus baccatus belongs to the family Resedaceae. It is widely spread in Saudi Arabia and other countries in Southwest Asia. O. baccatus is extensively used in traditional medicine as an anti-inflammatory and antibacterial agent, in addition to being a vital source of food for certain desert animal species. The aim of the present study was to investigate the chemical composition and antibacterial/anticancer activities of O. baccatus methanolic extracts collected from Hail, Saudi Arabia. Materials and Methods: The O. baccatus extracts were obtained by macerating the crude powder in methanol, followed by filtration and evaporation. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the methanolic extracts' chemical constituents. Broth microdilution assay for minimum inhibitory concentration (MIC) determination was used to assess antimicrobial activity, while the extracts' anticancer potential was assessed by sulforhodamine B Assay (SRB) assay. Results: The results of the antibacterial assay showed that the methanolic extracts from the roots and branches possessed varying degrees of activity against particular bacterial strains, with the highest activity being exerted by the branches' extract against Escherichia coli and Salmonella typhimurium (St), demonstrating MIC values of 15.6 µg/mL and 20 µg/mL, respectively. Furthermore, the SRB cell viability assay revealed that only the branches' extract inhibited the growth of A549 cancer cells, with an IC50 value of 86.19 µg/mL. The LC-MS analysis of the methanolic extracts from the plant's roots and branches was then conducted, resulting in the identification of 8 and 13 major chemical constituents, respectively. Azelaic acid, ß-amyrin, and phytanic acid are some of the bioactive compounds that were detected in the extracts via LC-MS, and they are thought to be responsible for the observed antibacterial/anticancer activity of O. baccatus methanolic extracts. Conclusions: This study confirmed the antibacterial/anticancer potential of O. baccatus methanolic extracts and analyzed their phytochemical constituents. Further isolation and biological screening are warranted to understand the therapeutic potential of O. baccatus.


Asunto(s)
Metanol , Resedaceae , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Medicina Tradicional
4.
Crit Rev Food Sci Nutr ; 62(10): 2683-2706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33327732

RESUMEN

Saffron (Crocus sativus L., family Iridaceae) is used traditionally for medicinal purpose in Chinese, Ayurvedic, Persian and Unani medicines. The bioactive constituents such as apocarotenoids, monoterpenoids, flavonoids, phenolic acids and phytosterols are widely investigated in experimental and clinical studies for a wide range of therapeutic effects, especially on the nervous system. Some of the active constituents of saffron have high bioavailability and bioaccessibility and ability to pass the blood-brain barrier. Multiple preclinical and clinical studies have supported neuroprotective, anxiolytic, antidepressant, learning and memory-enhancing effect of saffron and its bioactive constituents (safranal, crocin, and picrocrocin). Thus, this plant and its active compounds could be a beneficial medicinal food ingredient in the formation of drugs targeting nervous system disorders. This review focuses on phytochemistry, bioaccessibility, bioavailability, and bioactivity of phytochemicals in saffron. Furthermore, the therapeutic effect of saffron against different nervous system disorders has also been discussed in detail.


Asunto(s)
Crocus , Antidepresivos , Crocus/química , Flavonoides , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
5.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613881

RESUMEN

In the current study, the reversed-phased high-pressure liquid chromatography (RP-HPLC) method was proposed for the estimation of lignocaine hydrochloride (LIG), hydrocortisone (HYD) and Ketoprofen (KET) according to International Conference for Harmonization (ICH) Q2 R1 guidelines, in a gel formulation. The chromatographic evaluation was executed using Shimadzu RP-HPLC, equipped with a C8 column and detected using UV at 254 nm wavelength, using acetonitrile and buffer (50:50) as a mobile phase and diluent, at flow rate 1 mL/min and n injection volume of 20 µL. The retention time for LIG, HYD, and KET were 1.54, 2.57, and 5.78 min, correspondingly. The resultant values of analytical recovery demonstrate accuracy and precision of the method and was found specific in identification of the drugs from dosage form and marketed products. The limit of detection (LOD) for LIG, HYD, and KET were calculated to be 0.563, 0.611, and 0.669 ppm, while the limit of quantification (LOQ) was estimated almost at 1.690, 1.833, and 0.223 ppm, respectively. The AGREE software was utilized to evaluate the greenness score of the proposed method, and it was found greener in score (0.76). This study concluded that the proposed method was simple, accurate, precise, robust, economical, reproducible, and suitable for the estimation of drugs in transdermal gels.


Asunto(s)
Cetoprofeno , Cromatografía Líquida de Alta Presión/métodos , Hidrocortisona , Límite de Detección , Reproducibilidad de los Resultados
6.
Molecules ; 27(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35807562

RESUMEN

Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (-10.4 kcal/mol), poncirin had the highest binding energy (-9.4 kcal/mol) with NF-κB and JNK (-9.5 kcal/mol), respectively, and icariin had the highest binding affinity (-9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin's greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood-brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties.


Asunto(s)
Receptor Toll-Like 4 , Factor de Transcripción AP-1 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , FN-kappa B/metabolismo , Rutina/farmacología , Transducción de Señal , Factor de Transcripción AP-1/metabolismo
7.
Entropy (Basel) ; 24(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35885104

RESUMEN

The association of COVID-19 with neurological complications is a well-known fact, and researchers are endeavoring to investigate the mechanistic perspectives behind it. SARS-CoV-2 can bind to Toll-like receptor 4 (TLR-4) that would eventually lead to α-synuclein aggregation in neurons and stimulation of neurodegeneration pathways. Olive leaves have been reported as a promising phytotherapy or co-therapy against COVID-19, and oleuropein is one of the major active components of olive leaves. In the current study, oleuropein was investigated against SARS-CoV-2 target (main protease 3CLpro), TLR-4 and Prolyl Oligopeptidases (POP), to explore oleuropein potency against the neurological complications associated with COVID-19. Docking experiments, docking validation, interaction analysis, and molecular dynamic simulation analysis were performed to provide insight into the binding pattern of oleuropein with the three target proteins. Interaction analysis revealed strong bonding between oleuropein and the active site amino acid residues of the target proteins. Results were further compared with positive control lopinavir (3CLpro), resatorvid (TLR-4), and berberine (POP). Moreover, molecular dynamic simulation was performed using YASARA structure tool, and AMBER14 force field was applied to examine an 100 ns trajectory run. For each target protein-oleuropein complex, RMSD, RoG, and total potential energy were estimated, and 400 snapshots were obtained after each 250 ps. Docking analyses showed binding energy as -7.8, -8.3, and -8.5 kcal/mol for oleuropein-3CLpro, oleuropein-TLR4, and oleuropein-POP interactions, respectively. Importantly, target protein-oleuropein complexes were stable during the 100 ns simulation run. However, an experimental in vitro study of the binding of oleuropein to the purified targets would be necessary to confirm the present study outcomes.

8.
Curr Issues Mol Biol ; 43(2): 932-940, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34449548

RESUMEN

Prostate cancer (PCa) is addressed as the second most common form of onco-threat worldwide and is usually considered as the major cause of mortality in men. Recent times have seen a surge in exploration of plant-derived components for alternative therapeutical interventions against different oncological malignancies. Dammarolic acid or Asiatic acid (AsA) is an aglycone asiaticoside that has been reported for its efficacy in several ailments including cancer. The current study aimed to investigate the anti-proliferative potency of AsA against human prostate cancer PC-3 cells. Purified AsA was diluted and PC-3 cells were exposed to 20, 40, and 80 µM concentration and incubated for 24 h. Post-exposure, PC-3 cells showcased a substantial loss of their viability at 20 µM (p < 0.05), moreover, this reduction in cell viability escalated proportionally with an increase in AsA at concentrations of 40 and 80 µM (p < 0.01; p < 0.001) respectively. AsA-impelled loss of cellular viability was also evident from the acridine orange-stained photomicrographs, which was also used to quantify the viable and apoptotic cells using Image J software. Additionally, quantification of ROS within PC-3 cells also exhibited an increase in DCF-DA-mediated fluorescence intensity post-exposure to AsA in a dose-dependent manner. AsA-induced apoptosis in PC-3 cells was shown to be associated with augmented activity of caspase-3 proportionally to the AsA concentrations. Thus, initially, this exploratory study explicated that AsA treatment leads to anti-proliferative effects in PC-3 cells by enhancing oxidative stress and inciting apoptosis en route to onset of nuclear fragmentation.


Asunto(s)
FN-kappa B/antagonistas & inhibidores , Triterpenos Pentacíclicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Antiinfecciosos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , FN-kappa B/metabolismo , Células PC-3 , Neoplasias de la Próstata/metabolismo , Triterpenos/farmacología
9.
Pharmacol Res ; 166: 105521, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33662574

RESUMEN

Marine habitats are well-known for their diverse life forms that are potential sources of novel bioactive compounds. Evidence from existing studies suggests that these compounds contribute significantly to the field of pharmaceuticals, nutraceuticals, and cosmeceuticals. The isolation of natural compounds from a marine environment with protease inhibitory activity has gained importance due to drug discovery potential. Despite the increasing research endeavours focusing on protease inhibitors' design and characterization, many of these compounds have failed to reach final phases of clinical trials. As a result, the search for new sources for the development of protease inhibitors remains pertinent. This review focuses on the diverse marine protease inhibitors and their structure-activity relationships. Furthermore, the potential of marine protease inhibitors in drug discovery and molecular mechanism inhibitor binding are critically discussed.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Animales , Organismos Acuáticos/química , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Humanos , Inhibidores de Proteasas/aislamiento & purificación , Relación Estructura-Actividad
10.
Molecules ; 26(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918814

RESUMEN

Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)-cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.


Asunto(s)
Antineoplásicos/farmacología , Chalconas/farmacología , Complejos de Coordinación/farmacología , Cobre/farmacología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal , Neoplasias de la Mama Triple Negativas/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Chalconas/química , Complejos de Coordinación/química , Cobre/química , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Daño del ADN , Regulación hacia Abajo/efectos de los fármacos , Histonas/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
11.
S Afr J Bot ; 143: 428-434, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34226782

RESUMEN

COVID-19 (SARS-CoV-2) is a viral disease that causes acute respiratory syndrome, which has increased the morbidity and mortality rate throughout the world. World Health Organization has declared this COVID-19 outbreak as pandemic and classified health emergency throughout the world. In the recent past, outbreaks of SARS and MERS have shown the interspecies transmission potential of coronaviruses and limitations of already prescribed drugs to overcome this global public health issue. Therefore, there is a dire need to identify a new regimen of targeted drugs from natural compounds having anti-COVID19 potential. This study aimed at screening 1018 brown algal natural compounds (many of them previously reported to have immunomodulatory effects) having probable anti-COVID19 potentials. The source compounds were extracted from MarinLit, a database dedicated to marine natural products and screened against COVID-19 main protease. The top seven compounds were further analysed, and their interactions with the active site were visualized. This study will further warrant screening the potent compounds against the virus in-vitro conditions.

12.
J Mol Graph Model ; 133: 108858, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39232488

RESUMEN

Corynebacterium diphtheriae is a multi-drug resistant bacteria responsible for the life-threatening respiratory illness, diphtheria which can lead to severe Nervous system disorders, mainly infecting the lungs, heart, and kidneys if left untreated. In the current study, Corynebacterium diphtheriae MtrA response regulator protein was targeted, which regulates a two-component system of bacterial pathogenesis, and initiates DNA replication and cell division. In the current study a computational approach have been described for drug development against C. diphtheriae infections by inhibiting MtrA protein by small molecules acting as potential inhibitors against it. Molecular docking analysis of the equilibrated MtrA protein revealed compound-0.2970, compound-0.3029, and compound-0.3016 from Asinex Library as the promising inhibitors based on their lowest binding energies (-9.8 kJ/mol, -9.2 kJ/mol, and -8.9 kJ/mol), highest gold scores (40.53, 47.41, and 48.41), drug-likeness and pharmacokinetic properties. The MD simulation studies of the identified top-ranked inhibitors at 100 ns elucidated the system stability and fluctuations in the binding pocket of MtrA protein. Molecular Dynamics Simulations of the top three docked complexes further revealed that the standard binding pocket was retained ensuring the system stability. The rearrangements of H-bonds, van der Waals, pi-pi, and solid hydrophobic interactions were also observed. The binding free energy calculations (MM/PBSA and MM/GBSA) suggested a fundamental binding capability of the ligand to the target receptor MtrA. Therefore, the current study has provided excellent candidates acting as potent inhibitors for developing therapeutic drugs against C. diphtheriae infections. However, in vivo and in vitro animal experiments and accurate clinical trials are needed to validate the potential inhibitory effect of these compounds.

13.
J Biomol Struct Dyn ; 42(5): 2242-2256, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37211823

RESUMEN

Developing highly potent covalent inhibitors of Fibroblast growth factor receptors 1 (FGFR1) has always been a challenging task. In the current study, various computational techniques, such as 3D-QSAR, covalent docking, fingerprinting analysis, MD simulation followed by MMGB/PBSA, and per-residue energy decomposition analysis were used to explore the binding mechanism of pyrazolo[3,4-d]pyridazinone derivatives to FGFR1. The high q2 and r2 values for the CoMFA and CoMSIA models, suggest that the constructed 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The structural requirements revealed by the model's contour maps were strategically used to computationally create an in-house library of more than 100 new FGFR1 inhibitors using the R-group exploration technique implemented in the SparkTM software. The compounds from the in-house library were also mapped in the 3D-QSAR model that predicts comparable pIC50 values with the experimental values. A comparison between 3D-QSAR generated contours and molecular docking conformation of ligands was performed to reveal the fundamentals to design potent FGFR1 covalent inhibitors. The estimated binding free energies (MMGB/PBSA) for the selected compounds were in agreement with the experimental value ranking of their binding affinities towards FGFR1. Furthermore, per-residue energy decomposition analysis has identified Arg627 and Glu531 to contribute significantly in improved binding affinity of compound W16. During ADME analysis, the majority of in-house library compounds exhibited pharmacokinetic properties superior to those of experimentally produced compounds. These new compounds may help researchers better understand FGFR1 inhibition and lead to the creation of novel, potent FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Simulación de Dinámica Molecular , Pirazoles , Piridazinas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Pirazoles/química , Pirazoles/farmacología , Piridazinas/química , Piridazinas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores
14.
J Biomol Struct Dyn ; : 1-16, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444393

RESUMEN

Janus kinase 2(JAK2) is a potential target for anticancer drugs in the treatment of numerous myeloproliferative diseases due to its central role in the JAK/STAT signaling cascade. In this study, the binding behavior of 2 amino-pyridine derivatives as JAK2 inhibitors was investigated by using multifaceted strategies including 3D-QSAR, molecular docking, Fingerprint analysis, MD simulations, and MM-PBSA calculations. A credible COMFA (q2 = 0.606 and r2 = 0.919) and COMSIA (q2 = 0.641 and r2 = 0.992) model was developed, where the internal and external validation revealed that the obtained 3D-QSAR models could be capable of predicting bioactivities of JAK2 inhibitors. The structural criteria provided by the contour maps of model were used to computationally develop more potent 100 new JAK2 inhibitors. Docking studies were conducted on the model data set and newly developed compounds (in-house library) to demonstrate their binding mechanism and highlight the key interacting residues within JAK2 active site. The selected docked complexes underwent MD simulation (100 ns), which contributed in the further study of the binding interactions. Binding free energy analyses (MMGB/PBSA) revealed that key residues such as Glu930, Leu932 (hinge region), Asp939 (solvent accessible region), Arg980, Asn981and Asp994 (catalytic site) have a significantly facilitate ligand-protein interactions through H-bonding and van der Waals interactions. The preliminary in-silico ADMET evaluation revealed encouraging results for all the modeled and in-house library compounds. The findings of this research have the potential to offer valuable recommendations for the advancement of novel, potent, and efficacious JAK2 inhibitors. Overall, this work has successfully employed a wide range of computer-based methodologies to understand the interaction dynamics between 2-amino-pyridine derivatives and the JAK2 enzyme, which is a crucial target in myeloproliferative disorders.Communicated by Ramaswamy H. Sarma.

15.
Chem Biol Interact ; 393: 110940, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38467339

RESUMEN

Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.


Asunto(s)
Quinasas Ciclina-Dependientes , Neoplasias , Humanos , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Ciclinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
16.
Front Chem ; 12: 1352009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435669

RESUMEN

Glioblastoma multiforme (GBM) is regarded as the most aggressive form of brain tumor delineated by high cellular heterogeneity; it is resistant to conventional therapeutic regimens. In this study, the anti-cancer potential of garcinol, a naturally derived benzophenone, was assessed against GBM. During the analysis, we observed a reduction in the viability of rat glioblastoma C6 cells at a concentration of 30 µM of the extract (p < 0.001). Exposure to garcinol also induced nuclear fragmentation and condensation, as evidenced by DAPI-stained photomicrographs of C6 cells. The dissipation of mitochondrial membrane potential in a dose-dependent fashion was linked to the activation of caspases. Furthermore, it was observed that garcinol mediated the inhibition of NF-κB (p < 0.001) and decreased the expression of genes associated with cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclin D1). Moreover, garcinol showed interaction with NF-κB through some important amino acid residues, such as Pro275, Trp258, Glu225, and Gly259 during molecular docking analysis. Comparative analysis with positive control (temozolomide) was also performed. We found that garcinol induced apoptotic cell death via inhibiting NF-κB activity in C6 cells, thus implicating it as a plausible therapeutic agent for GBM.

17.
Food Chem Toxicol ; 193: 115028, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39368542

RESUMEN

This study explores the phytochemical composition and biological activities of Verbascum yemenense, a plant known for its medicinal properties. The plant extract revealed a rich presence of bioactive compounds that exhibited significant antioxidant properties against free radicals. The enzyme inhibition potential was particularly notable against cholinesterases (AChE: 2.56 mg GALAE/g; BChE: 1.98 mg GALAE/g), and tyrosinase (87.94 mg KAE/g), α-glucosidase suggesting potential therapeutic applications in neurodegenerative diseases, skin disorders and diabetes. Molecular docking studies and Molecular Dynamics simulations, providing insights into the interaction mechanisms of the identified compounds with the target proteins. Molecular docking studies revealed high binding affinities of the phytoconstituents, with compounds like VY4 and phyllanthusol-A (VY15) showing substantial docking scores against AChE (-9.840 kcal/mol) and BChE (-9.853 kcal/mol), respectively. For instance, the RMSD values during the MD simulations for compound VY17 in the AML complex showed a stable conformation, fluctuating within a range of 0.75 Å to 1.75 Å, indicating a strong and consistent interaction with the enzyme. MESP studies highlighted VY17's distinctive electrostatic features, notably a pronounced electronegative region, which might contribute to its binding efficiency. These findings suggest that V. yemenense is a promising candidate for developing novel therapeutic agents.

18.
Front Pharmacol ; 14: 1286507, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841925

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2023.1206981.].

19.
Front Pharmacol ; 14: 1206981, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448964

RESUMEN

Introduction: Among numerous triterpenoids of the Cucurbitaceae family, Cucurbitacin-B (Cur-B) is being explored for its pharmacological attributes. Reports from previous studies have explicitly shown that Cur-B possesses substantial anticancer effects. The present report focuses on exploring the anticancer attributes of Cur-B against androgen-dependent PCa LNCaP cells. Methods: LNCaP cells were exposed to commercially available purified Cur-B at varying concentrations that were selected as 5, 10, 15, 20, and 25 µM for some time of 24 h to perform various experimental studies. Results: Cytotoxicity evaluation revealed that Cur-B impeded the LNCaP cell's viability at 5 µM (p <0.05) which increased considerably at a concentration of 25 µM (p <0.001). Cur-B was also efficacious in inducing the changes within nu-clear morphology followed by a concomitant increase in the activities of key caspases including caspase-3, -8, and -9 intriguingly in a dose-dependent trend. Cur-B treatment not only resulted in the augmentation of intracellular ROS levels within LNCaP cells at 5 µM (p <0.05) but also in-creased significantly at 25 µM concentration (p <0.001). Elevation in the ROS levels was also found to be correlated with dissipated mitochondrial membrane potential (ΔΨm) which culminated in the onset of significant apoptosis at 25 µM concentration (p <0.001). Cur-B exposure also resulted in the downregulation of cyclin D1, cyclin-dependent kinase 4 (CDK4) followed by amplified levels of p21Cip1 mRNA. Importantly, exposure of Cur-B competently reduced the expression of the Notch signaling cascade which may be the plausible cause behind Cur-B-instigated apoptotic cell death and cell cycle arrest in LNCaP cells. Discussion: These observations thus, explicitly indicated that Cur-B could be plausibly further explored as potent therapeutics against androgen-dependent PCa.

20.
ACS Omega ; 8(1): 56-73, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643505

RESUMEN

Prostate cancer (PCA), the most common cancer in men, accounted for 1.3 million new incidences in 2018. An increase in incidences is an issue of concern that should be addressed. Of all the reported prostate cancers, 85% were detected in stages III and IV, making them difficult to treat. Conventional drugs gradually lose their efficacy due to the developed resistance against them, thus requiring newer therapeutic agents to be used as monotherapy or combination. Recent research regarding treatment options has attained remarkable speed and development. Therefore, in this context, drug repurposing comes into the picture, which is defined as the "investigation of the off-patent, approved and marketed drugs for a novel therapeutic indication" which saves at least 30% of the time and cost, reducing the cost of treatment for patients, which usually runs high in cancer patients. The anticancer property of cardiac glycosides in cancers was tested in the early 1980s. The trend then shifts toward treating prostate cancer by repurposing other cardiovascular drugs. The current review mainly emphasizes the advantageous antiprostate cancer profile of conventional CVS drugs like cardiac glycosides, RAAS inhibitors, statins, heparin, and beta-blockers with underlying mechanisms.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda