Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
2.
Retrovirology ; 18(1): 6, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622348

RESUMEN

BACKGROUND: The Human T-cell Lymphotropic Virus Type-1 (HTLV-1) is a blood-borne pathogen and etiological agent of Adult T-cell Leukemia/Lymphoma (ATLL) and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 has currently infected up to 10 million globally with highly endemic areas in Japan, Africa, the Caribbean and South America. We have previously shown that Extracellular Vesicles (EVs) enhance HTLV-1 transmission by promoting cell-cell contact. RESULTS: Here, we separated EVs into subpopulations using differential ultracentrifugation (DUC) at speeds of 2 k (2000×g), 10 k (10,000×g), and 100 k (100,000×g) from infected cell supernatants. Proteomic analysis revealed that EVs contain the highest viral/host protein abundance in the 2 k subpopulation (2 k > 10 k > 100 k). The 2 k and 10 k populations contained viral proteins (i.e., p19 and Tax), and autophagy proteins (i.e., LC3 and p62) suggesting presence of autophagosomes as well as core histones. Interestingly, the use of 2 k EVs in an angiogenesis assay (mesenchymal stem cells + endothelial cells) caused deterioration of vascular-like-tubules. Cells commonly associated with the neurovascular unit (i.e., astrocytes, neurons, and macrophages) in the blood-brain barrier (BBB) showed that HTLV-1 EVs may induce expression of cytokines involved in migration (i.e., IL-8; 100 k > 2 k > 10 k) from astrocytes and monocyte-derived macrophages (i.e., IL-8; 2 k > 10 k). Finally, we found that EVs were able to promote cell-cell contact and viral transmission in monocytic cell-derived dendritic cell. The EVs from both 2 k and 10 k increased HTLV-1 spread in a humanized mouse model, as evidenced by an increase in proviral DNA and RNA in the Blood, Lymph Node, and Spleen. CONCLUSIONS: Altogether, these data suggest that various EV subpopulations induce cytokine expression, tissue damage, and viral spread.


Asunto(s)
Células Endoteliales/virología , Vesículas Extracelulares/virología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Animales , Comunicación Celular , Citocinas/análisis , Citocinas/genética , Citocinas/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/fisiología , Femenino , Infecciones por HTLV-I/virología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Proteómica , Células THP-1 , Células U937
3.
PLoS Pathog ; 15(2): e1007589, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30818370

RESUMEN

Human T Lymphotropic virus (HTLV) infection can persist in individuals resulting, at least in part, from viral escape of the innate immunity, including inhibition of type I interferon response in infected T-cells. Plasmacytoid dendritic cells (pDCs) are known to bypass viral escape by their robust type I interferon production. Here, we demonstrated that pDCs produce type I interferons upon physical cell contact with HTLV-infected cells, yet pDC activation inversely correlates with the ability of the HTLV-producing cells to transmit infection. We show that pDCs sense surface associated-HTLV present with glycan-rich structure referred to as biofilm-like structure, which thus represents a newly described viral structure triggering the antiviral response by pDCs. Consistently, heparan sulfate proteoglycans and especially the cell surface pattern of terminal ß-galactoside glycosylation, modulate the transmission of the immunostimulatory RNA to pDCs. Altogether, our results uncover a function of virus-containing cell surface-associated glycosylated structures in the activation of innate immunity.


Asunto(s)
Células Dendríticas/fisiología , Infecciones por HTLV-I/metabolismo , Citocinas , Galactósidos/metabolismo , Glicosilación , Infecciones por HTLV-I/inmunología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 2 Humano/inmunología , Virus Linfotrópico T Tipo 2 Humano/patogenicidad , Humanos , Inmunidad Innata/fisiología , Interferón Tipo I/inmunología , Interferón-alfa/inmunología , Interferón-alfa/metabolismo , Células Jurkat , Linfocitos T/inmunología , Linfocitos T/fisiología
4.
PLoS Pathog ; 15(10): e1008093, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600344

RESUMEN

ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.


Asunto(s)
Antivirales/farmacología , Exorribonucleasas/farmacología , Biosíntesis de Proteínas , ARN Viral/metabolismo , Estomatitis Vesicular/inmunología , Vesiculovirus/inmunología , Replicación Viral/efectos de los fármacos , Animales , Exorribonucleasas/fisiología , Células HeLa , Humanos , Ratones , Ratones Noqueados , Estabilidad del ARN , ARN Viral/genética , Estomatitis Vesicular/tratamiento farmacológico , Estomatitis Vesicular/virología , Vesiculovirus/efectos de los fármacos
5.
PLoS Pathog ; 13(4): e1006353, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28426803

RESUMEN

Human T lymphotropic Virus type 1 (HTLV-1) is the etiological agent of Adult T cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Both CD4+ T-cells and dendritic cells (DCs) infected with HTLV-1 are found in peripheral blood from HTLV-1 carriers. We previously demonstrated that monocyte-derived IL-4 DCs are more susceptible to HTLV-1 infection than autologous primary T-cells, suggesting that DC infection precedes T-cell infection. However, during blood transmission, breast-feeding or sexual transmission, HTLV-1 may encounter different DC subsets present in the blood, the intestinal or genital mucosa respectively. These different contacts may impact HTLV-1 ability to infect DCs and its subsequent transfer to T-cells. Using in vitro monocyte-derived IL-4 DCs, TGF-ß DCs and IFN-α DCs that mimic DCs contacting HTLV-1 in vivo, we show here that despite their increased ability to capture HTLV-1 virions, IFN-α DCs restrict HTLV-1 productive infection. Surprisingly, we then demonstrate that it is not due to the antiviral activity of type-I interferon produced by IFN-α DCs, but that it is likely to be linked to a distinct trafficking route of HTLV-1 in IL-4 DCs vs. IFN-α DCs. Finally, we demonstrate that, in contrast to IL-4 DCs, IFN-α DCs are impaired in their capacity to transfer HTLV-1 to CD4 T-cells, both after viral capture and trans-infection and after their productive infection. In conclusion, the nature of the DCs encountered by HTLV-1 upon primo-infection and the viral trafficking route through the vesicular pathway of these cells determine the efficiency of viral transmission to T-cells, which may condition the fate of infection.


Asunto(s)
Antivirales/farmacología , Citocinas/inmunología , Células Dendríticas/inmunología , Infecciones por HTLV-I/inmunología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Paraparesia Espástica Tropical/inmunología , Adulto , Células Dendríticas/virología , Infecciones por HTLV-I/transmisión , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 1 Humano/fisiología , Humanos , Interferón Tipo I/inmunología , Modelos Biológicos , Paraparesia Espástica Tropical/patología , Paraparesia Espástica Tropical/virología , Linfocitos T/inmunología , Linfocitos T/virología
7.
J Virol ; 89(20): 10580-90, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26269171

RESUMEN

UNLABELLED: Human T-cell leukemia virus type 1 (HTLV-1)-infected CD4(+) T cells and dendritic cells (DCs) are present in peripheral blood from HTLV-1 carriers. While T-cell infection requires cell-cell contact, DCs might be infected with cell-free virus, at least in vitro. However, a thorough comparison of the susceptibilities of the two cell types to HTLV-1 infection using cell-associated and cell-free viral sources has not been performed. We first determined that human primary monocyte-derived dendritic cells (MDDCs) were more susceptible to HTLV-1 infection than their autologous lymphocyte counterparts after contact with chronically infected cells. Next, a comparison of infection efficiency using nonconcentrated or concentrated supernatants from infected cells as well as purified viral biofilm was performed. Integrated provirus was found after exposure of MDDCs or primary lymphocytes to viral biofilm but not to a viral supernatant. Using a large series of primary cell samples (n = 21), we demonstrated a higher proviral load in MDDCs exposed to viral biofilm than in lymphocytes. This higher susceptibility is correlated to a higher expression of neuropilin-1 on MDDCs than on autologous activated T lymphocytes. Moreover, we show that MDDCs infected with viral biofilm can transmit the virus to lymphocytes. In conclusion, MDDCs are more susceptible to HTLV-1 infection than autologous lymphocytes in vitro, supporting a model in which DC infection might represent an important step during primo-infection in vivo. IMPORTANCE: HTLV-1 is able to infect several cell types, but viral DNA is mainly found in T lymphocytes in vivo. This supports a model in which T lymphocytes are the main target of infection. However, during the primo-infection of new individuals, incoming viruses might first encounter dendritic cells (DCs), the specialized immune cells responsible for the antiviral response of the host. HTLV-1 cell-free purified viruses can infect dendritic cells in vitro, while T-cell infection is restricted to cell-to-cell transmission. In order to understand the sequence of HTLV-1 dissemination, we undertook a direct comparison of the susceptibilities of the two cell types using cell-associated and cell-free viral sources. We report here that MDDCs are more susceptible to HTLV-1 infection than autologous lymphocytes in vitro and are able to efficiently transmit the virus to lymphocytes. Our results suggest that DCs may represent a true viral reservoir, as the first cell type to be infected in vivo.


Asunto(s)
Células Dendríticas/virología , Interacciones Huésped-Patógeno/inmunología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Linfocitos T/virología , Línea Celular , Técnicas de Cocultivo , Células Dendríticas/inmunología , Expresión Génica , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Humanos , Células Jurkat , Neuropilina-1/genética , Neuropilina-1/inmunología , Especificidad de Órganos , Cultivo Primario de Células , Transducción de Señal , Linfocitos T/inmunología , Carga Viral/fisiología , Replicación Viral/fisiología
8.
Cell Mol Life Sci ; 72(22): 4409-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26047659

RESUMEN

Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Exosomas/genética , Priones/genética , Transducción de Señal/genética , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Línea Celular , Línea Celular Tumoral , Ceramidas/metabolismo , Proteínas de Unión al ADN/genética , Exosomas/metabolismo , Exosomas/ultraestructura , Humanos , Immunoblotting , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica , Priones/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Interferencia de ARN , Conejos , Ovinos , Factores de Transcripción/genética
9.
Retrovirology ; 11: 93, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25389016

RESUMEN

BACKGROUND: The role of innate immunity in general and of type I interferon (IFN-I) in particular in HTLV-1 pathogenesis is still a matter of debate. ADAR1-p150 is an Interferon Stimulated Gene (ISG) induced by IFN-I that can edit viral RNAs. We therefore investigated whether it could play the role of an anti-HTLV factor. RESULTS: We demonstrate here that ADAR1 is also expressed in the absence of IFN stimulation in activated primary T-lymphocytes that are the natural target of this virus and in HTLV-1 or HTLV-2 chronically infected T-cells. ADAR1 expression is also increased in primary lymphocytes obtained from HTLV-1 infected individuals. We show that ADAR1 enhances HTLV-1 and HTLV-2 infection in T-lymphocytes and that this proviral effect is independent from its editing activity. ADAR1 expression suppresses IFN-α inhibitory effect on HTLV-1 and HTLV-2 and acts through the repression of PKR phosphorylation. DISCUSSION: This study demonstrates that two interferon stimulated genes, i.e. PKR and ADAR1 have opposite effects on HTLV replication in vivo. The balanced expression of those proteins could determine the fate of the viral cycle in the course of infection.


Asunto(s)
Adenosina Desaminasa/metabolismo , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/fisiología , Virus Linfotrópico T Tipo 2 Humano/fisiología , Proteínas de Unión al ARN/metabolismo , Replicación Viral , eIF-2 Quinasa/antagonistas & inhibidores , Células Cultivadas , Humanos , Inhibición Psicológica , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Linfocitos T/inmunología , Linfocitos T/virología
10.
J Virol ; 87(24): 13386-96, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24089560

RESUMEN

Type I interferon (IFN-I) inhibits the replication of different viruses. However, the effect of IFN-I on the human T-lymphotropic virus type 1 (HTLV-1) viral cycle is controversial. Here, we investigated the consequences of IFN-α addition for different steps of HTLV-1 and HTLV-2 infection. We first show that alpha interferon (IFN-α) efficiently impairs HTLV-1 and HTLV-2 de novo infection in a T cell line and in primary lymphocytes. Using pseudotyped viruses expressing HTLV-1 envelope, we then show that cell-free infection is insensitive to IFN-α, demonstrating that the cytokine does not affect the early stages of the viral cycle. In contrast, intracellular levels of Gag, Env, or Tax protein are affected by IFN-α treatment in T cells, primary lymphocytes, or 293T cells transfected with HTLV-1 or HTLV-2 molecular clones, demonstrating that IFN-α acts during the late stages of infection. We show that IFN-α does not affect Tax-mediated transcription and acts at a posttranscriptional level. Using either small interfering RNA (siRNA) directed against PKR or a PKR inhibitor, we demonstrate that PKR, whose expression is induced by interferon, plays a major role in IFN-α-induced HTLV-1/2 inhibition. These results indicate that IFN-α has a strong repressive effect on the HTLV-1 and HTLV-2 viral cycle during de novo infection of cells that are natural targets of the viruses.


Asunto(s)
Infecciones por HTLV-I/enzimología , Infecciones por HTLV-II/enzimología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Virus Linfotrópico T Tipo 2 Humano/fisiología , Interferón-alfa/metabolismo , eIF-2 Quinasa/metabolismo , Línea Celular , Activación Enzimática , Infecciones por HTLV-I/genética , Infecciones por HTLV-I/virología , Infecciones por HTLV-II/genética , Infecciones por HTLV-II/virología , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 2 Humano/genética , Humanos , Interferón alfa-2 , Proteínas Recombinantes/metabolismo , eIF-2 Quinasa/genética
11.
Cell Mol Life Sci ; 69(8): 1331-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22076653

RESUMEN

The cellular prion protein PrP(C)/CD230 is a GPI-anchor protein highly expressed in cells from the nervous and immune systems and well conserved among vertebrates. In the last decade, several studies suggested that PrP(C) displays antiviral properties by restricting the replication of different viruses, and in particular retroviruses such as murine leukemia virus (MuLV) and the human immunodeficiency virus type 1 (HIV-1). In this context, we previously showed that PrP(C) displays important similarities with the HIV-1 nucleocapsid protein and found that PrP(C) expression in a human cell line strongly reduced HIV-1 expression and virus production. Using different PrP(C) mutants, we report here that the anti-HIV-1 properties are mostly associated with the amino-terminal 24-KRPKP-28 basic domain. In agreement with its reported RNA chaperone activity, we found that PrP(C) binds to the viral genomic RNA of HIV-1 and negatively affects its translation. Using a combination of biochemical and cell imaging strategies, we found that PrP(C) colocalizes with the virus assembly machinery at the plasma membrane and at the virological synapse in infected T cells. Depletion of PrP(C) in infected T cells and microglial cells favors HIV-1 replication, confirming its negative impact on the HIV-1 life cycle.


Asunto(s)
VIH-1/crecimiento & desarrollo , Proteínas PrPC/metabolismo , Linfocitos T/virología , Antígenos CD/genética , Línea Celular , Células Cultivadas , Proteínas Ligadas a GPI/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Productos del Gen gag/análisis , VIH-1/genética , VIH-1/metabolismo , Humanos , Mutación , Proteínas PrPC/análisis , Proteínas PrPC/química , Proteínas PrPC/genética , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN Viral/genética , ARN Viral/metabolismo
12.
mBio ; 14(2): e0352622, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36802226

RESUMEN

The human T-cell leukemia virus (HTLV)-1 is responsible for an aggressive neurodegenerative disease (HAM/TSP) and multiple neurological alterations. The capacity of HTLV-1 to infect central nervous system (CNS) resident cells, together with the neuroimmune-driven response, has not been well-established. Here, we combined the use of human induced pluripotent stem cells (hiPSC) and of naturally STLV-1-infected nonhuman primates (NHP) as models with which to investigate HTLV-1 neurotropism. Hence, neuronal cells obtained after hiPSC differentiation in neural polycultures were the main cell population infected by HTLV-1. Further, we report the infection of neurons with STLV-1 in spinal cord regions as well as in brain cortical and cerebellar sections of postmortem NHP. Additionally, reactive microglial cells were found in infected areas, suggesting an immune antiviral response. These results emphasize the need to develop new efficient models by which to understand HTLV-1 neuroinfection and suggest an alternative mechanism that leads to HAM/TSP.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Virus Linfotrópico T Tipo 1 de los Simios , Animales , Humanos , Encéfalo , Virus Linfotrópico T Tipo 1 Humano/fisiología , Primates , Neuronas
13.
Biol Cell ; 100(10): 603-15, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18422484

RESUMEN

BACKGROUND INFORMATION: TSEs (transmissible spongiform encephalopathies) are neurodegenerative disorders affecting humans and animals. PrP(Sc), a conformationally altered isoform of the normal prion protein (PrP(C)), is thought to be the pathogenic agent. However, the biochemical composition of the prion agent is still matter of debate. The potential transmission risk of the prion agent through biological fluids has been shown, but the development of competitive diagnostic tests and treatment for TSEs requires a more comprehensive knowledge of the agent and the cellular mechanisms by which it is disseminated. With this aim, we initiated characterization of the prion agent and the pathways by which it can be propagated using the cellular model system neuroblastoma (N2a). RESULTS: The present study shows that N2a cells infected with scrapie release the prion agent into the cell culture medium in association with exosome-like structures and viral particles of endogenous origin. We found that both prion proteins and scrapie infectivity are mainly associated with exosome-like structures that contain viral envelope glycoprotein and nucleic acids, such as RNAs. CONCLUSIONS: The dissemination of prions in N2a cell culture is mediated through the exosomal pathway.


Asunto(s)
Exosomas/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Scrapie/metabolismo , Animales , Línea Celular Tumoral , Exosomas/virología , Ratones , Neuroblastoma , Enfermedades por Prión/virología , Scrapie/virología
14.
Front Microbiol ; 9: 278, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593659

RESUMEN

Five to ten million individuals are infected by Human T-cell Leukemia Virus type 1 (HTLV-1). HTLV-1 is transmitted through prolonged breast-feeding, by sexual contacts and by transmission of infected T lymphocytes through blood transfusion. One to ten percent of infected carriers will develop a severe HTLV-1-associated disease: Adult-T-cell leukemia/lymphoma (ATLL), or a neurological disorder named Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy (TSP/HAM). In vivo, HTLV-1 is mostly detected in CD4+ T-cells, and to a lesser extent in CD8+ T cells and dendritic cells. There is a strong correlation between HTLV-1 proviral load (PVL) and clinical status of infected individuals. Thus, reducing PVL could be part of a strategy to prevent or treat HTLV-1-associated diseases among carriers. Treatment of ATLL patients using conventional chemotherapy has very limited benefit. Some chronic and acute ATLL patients are, however, efficiently treated with a combination of interferon α and zidovudine (IFN-α/AZT), to which arsenic trioxide is added in some cases. On the other hand, no efficient treatment for TSP/HAM patients has been described yet. It is therefore crucial to develop therapies that could either prevent the occurrence of HTLV-1-associated diseases or at least block the evolution of the disease in the early stages. In vivo, reverse transcriptase (RT) activity is low in infected cells, which is correlated with a clonal mode of viral replication. This renders infected cells resistant to nucleoside RT inhibitors such as AZT. However, histone deacetylase inhibitors (HDACi) associated to AZT efficiently induces viral expression and prevent de novo cellular infection. In asymptomatic STLV-1 infected non-human primates, HDACi/AZT combination allows a strong decrease in the PVL. Unfortunately, rebound in the PVL occurs when the treatment is stopped, highlighting the need for better antiviral compounds. Here, we review previously used strategies targeting HTLV-1 replication. We also tested a series of HIV-1 RT inhibitors in an in vitro anti-HTLV-1 screen, and report that bis-POM-PMEA (adefovir dipivoxil) and bis-POC-PMPA (tenofovir disoproxil) are much more efficient compared to AZT to decrease HTLV-1 cell-to-cell transmission in vitro. Our results suggest that revisiting already established antiviral drugs is an interesting approach to discover new anti-HTLV-1 drugs.

15.
PLoS Negl Trop Dis ; 12(10): e0006812, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30273350

RESUMEN

Simian T-Leukemia Virus type 1 and Simian Foamy Virus infect non-human primates. While STLV-1, as HTLV-1, causes Adult T-cell Leukemia/lymphoma, SFV infection is asymptomatic. Both retroviruses can be transmitted from NHPs to humans through bites that allow contact between infected saliva and recipient blood. Because both viruses infect CD4+ T-cells, they might interfere with each other replication, and this might impact viral transmission. Impact of STLV-1 co-infection on SFV replication was analyzed in 18 SFV-positive/STLV-1-negative and 18 naturally SFV/STLV-1 co-infected Papio anubis. Even if 9 animals were found STLV-1-positive in saliva, STLV-1 PVL was much higher in the blood. SFV proviruses were detected in the saliva of all animals. Interestingly, SFV proviral load was much higher in the blood of STLV-1/SFV co-infected animals, compared to STLV-1-negative animals. Given that soluble Tax protein can enter uninfected cells, we tested its effect on foamy virus promoter and we show that Tax protein can transactivate the foamy LTR. This demonstrates that true STLV-1 co-infection or Tax only has an impact on SFV replication and may influence the ability of the virus to be zoonotically transmitted as well as its ability to promote hematological abnormalities.


Asunto(s)
Coinfección/virología , Infecciones por Deltaretrovirus/virología , Infecciones por Retroviridae/virología , Virus Linfotrópico T Tipo 1 de los Simios/aislamiento & purificación , Virus Espumoso de los Simios/aislamiento & purificación , Carga Viral , Animales , Sangre/virología , Infecciones por Deltaretrovirus/complicaciones , Transmisión de Enfermedad Infecciosa , Papio anubis , Provirus/aislamiento & purificación , Infecciones por Retroviridae/complicaciones , Saliva/virología , Replicación Viral
16.
Methods Mol Biol ; 1582: 47-55, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28357661

RESUMEN

Unlike HIV-1, HTLV-1 viral transmission requires cell-to-cell contacts, while cell-free virions are poorly infectious and almost absent from body fluids. Though the virus uses three nonexclusive mechanisms to infect new target cells: (1) MTOC polarization followed by formation of a virological synapse and viral transfer into a synaptic cleft, (2) genesis of a viral biofilm and its transfer of embedded viruses, or (3) HTLV-1 transmission using conduits. The Tax transactivator and the p8 viral proteins are involved in virological synapse and nanotube formation respectively.HTLV-1 transcription from the viral promoter (i.e., LTR) requires the Tax protein that is absent from the viral particle and is expressed after productive infection. The present chapter focuses on a series of protocols used to quantify HTLV-1 de novo infection of target cells. These techniques do not discriminate between the different modes of transmission, but allow an accurate measure of productive infection. We used cell lines that are stably transfected with LTR-GFP or LTR-luciferase plasmids and quantified Green Fluorescent Protein expression or luciferase activity, since both of them reflect Tax expression.


Asunto(s)
Productos del Gen tax/metabolismo , Genes Reporteros , Infecciones por HTLV-I/metabolismo , Infecciones por HTLV-I/transmisión , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Luciferasas/biosíntesis , Técnicas de Cocultivo , Productos del Gen tax/genética , Infecciones por HTLV-I/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Células Jurkat , Luciferasas/genética
17.
Cancer Lett ; 389: 78-85, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28034804

RESUMEN

HTLV-1 causes Adult T cell Leukemia/Lymphoma (ATLL) in humans. We describe an ATL-like disease in a 9 year-old female baboon naturally infected with STLV-1 (the simian counterpart of HTLV-1), with a lymphocyte count over 1010/L, lymphocytes with abnormal nuclear morphology, and pulmonary and skin lesions. The animal was treated with a combination of AZT and alpha interferon. Proviral load (PVL) was measured every week. Because the disease continued to progress, the animal was euthanized. Abnormal infiltrates of CD3+CD25+ lymphocytes and Tax-positive cells were found by histological analyses in both lymphoid and non-lymphoid organs. PVL was measured and clonal diversity was assessed by LM-PCR (Ligation-Mediated Polymerase Chain Reaction) and high throughput sequencing, in blood during treatment and in 14 different organs. The highest PVL was found in lymph nodes, spleen and lungs. One major clone and a number of intermediate abundance clones were present in blood throughout the course of treatment, and in organs. These results represent the first multi-organ clonality study in ATLL. We demonstrate a previously undescribed clonal complexity in ATLL. Our data reinforce the usefulness of natural STLV-1 infection as a model of ATLL.


Asunto(s)
Infecciones por Deltaretrovirus/veterinaria , Enfermedades de los Monos/patología , Virus Linfotrópico T Tipo 1 de los Simios , Animales , Infecciones por Deltaretrovirus/tratamiento farmacológico , Infecciones por Deltaretrovirus/patología , Infecciones por Deltaretrovirus/virología , Modelos Animales de Enfermedad , Femenino , Interferón-alfa/farmacología , Leucemia-Linfoma de Células T del Adulto/patología , Linfocitos/patología , Enfermedades de los Monos/tratamiento farmacológico , Enfermedades de los Monos/virología , Papio , Carga Viral , Zidovudina/farmacología
18.
FEBS Lett ; 580(15): 3649-56, 2006 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-16756976

RESUMEN

Melanoma cell adhesion molecule (MCAM), an adhesion molecule belonging to the Ig superfamily, is an endothelial marker and is expressed in different epithelia. MCAM is expressed as two isoforms differing by their cytoplasmic domain: MCAM-l and MCAM-s (long and short). In order to identify the respective role of each MCAM isoform, we analyzed MCAM isoform targeting in polarized epithelial Madin-Darby canine kidney (MDCK) cells using MCAM-GFP chimeras. Confocal microscopy revealed that MCAM-s and MCAM-l were addressed to the apical and basolateral membranes, respectively. Transfection of MCAM-l mutants established that a single dileucine motif (41-42) of the cytoplasmic domain was required for MCAM-l basolateral targeting in MDCK cells. Although double labelling experiments showed that MCAM-l is not a component of adherens junctions and focal adhesions, its expression on basolateral membranes suggests that MCAM-l is involved in epithelium insuring.


Asunto(s)
Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Adhesión Celular , Moléculas de Adhesión Celular/genética , Línea Celular , Uniones Célula-Matriz , Pollos , Citoplasma/metabolismo , Perros , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia
19.
FEMS Immunol Med Microbiol ; 39(3): 205-12, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-14642304

RESUMEN

To date three sites of emergence of hemopoietin cells have been identified during early avian development: the yolk sac, the intraaortic clusters and recently the allantois. However, the contributions of the hematopoietic stem cell (HSC) populations generated by these different sites to definitive hematopoiesis and their migration routes are not fully unraveled. Experimental embryology as well as the establishment of the genetic cascades involved in HSC emergence help now to draw a better scheme of these processes.


Asunto(s)
Células Madre Hematopoyéticas/citología , Codorniz/embriología , Linfocitos T/citología , Alantoides/citología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Embrión de Pollo , Hematopoyesis/fisiología , Saco Vitelino/citología
20.
PLoS One ; 7(1): e30872, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22295118

RESUMEN

Prion diseases are fatal, transmissible neurodegenerative diseases of the central nervous system. An abnormally protease-resistant and insoluble form (PrP(Sc)) of the normally soluble protease-sensitive host prion protein (PrP(C)) is the major component of the infectious prion. During the course of prion disease, PrP(Sc) accumulates primarily in the lymphoreticular and central nervous systems. Recent studies have shown that co-infection of prion-infected fibroblast cells with the Moloney murine leukemia virus (Mo-MuLV) strongly enhanced the release and spread of scrapie infectivity in cell culture, suggesting that retroviral coinfection might significantly influence prion spread and disease incubation times in vivo. We now show that another retrovirus, the murine leukemia virus Friend (F-MuLV), also enhanced the release and spread of scrapie infectivity in cell culture. However, peripheral co-infection of mice with both Friend virus and the mouse scrapie strain 22L did not alter scrapie disease incubation times, the levels of PrP(Sc) in the brain or spleen, or the distribution of pathological lesions in the brain. Thus, retroviral co-infection does not necessarily alter prion disease pathogenesis in vivo, most likely because of different cell-specific sites of replication for scrapie and F-MuLV.


Asunto(s)
Coinfección , Virus de la Leucemia Murina de Friend/fisiología , Proteínas PrPSc/metabolismo , Enfermedades por Prión/virología , Animales , Células Dendríticas Foliculares/metabolismo , Células Dendríticas Foliculares/virología , Susceptibilidad a Enfermedades , Exosomas/metabolismo , Exosomas/virología , Periodo de Incubación de Enfermedades Infecciosas , Ratones , Células 3T3 NIH , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda